[1]李雨润,张健,戎贤.液化土中直斜桩基抗震研究进展与新问题[J].地震工程与工程振动,2018,38(06):171-181.[doi:10.13197/j.eeev.2018.06.171.liyr.020]
 LI Yurun,ZHANG Jian,RONG Xian.Recent advances and new problems in seismic behavior for vertical and batter pile foundation in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(06):171-181.[doi:10.13197/j.eeev.2018.06.171.liyr.020]
点击复制

液化土中直斜桩基抗震研究进展与新问题
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
38
期数:
2018年06
页码:
171-181
栏目:
论文
出版日期:
2018-12-31

文章信息/Info

Title:
Recent advances and new problems in seismic behavior for vertical and batter pile foundation in liquefied soil
作者:
李雨润12 张健1 戎贤12
1. 河北工业大学 土木与交通学院, 天津 300401;
2. 河北省土木工程技术研究中心, 天津 300401
Author(s):
LI Yurun12 ZHANG Jian1 RONG Xian12
1. College of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China;
2. Civil Engineering Technology Research Center of Hebei Province, Tianjin 300401, China
关键词:
不同地震动强度液化土桩-土相互作用斜桩数值仿真
Keywords:
different seismic intensityliquefied soilpile-soil interactionbatter pilenumerical simulation
分类号:
P315;TU47
DOI:
10.13197/j.eeev.2018.06.171.liyr.020
摘要:
本文以液化土中桩基水平承载特性及抗震设计方法为应用背景,对目前国内外桩基抗震研究现状进行了总结评价。在此基础上,指出在地震液化条件下桩基力学响应和工作性能尚需进一步研究的几个关键问题。主要包括:(1)不同地震动强度作用下的砂土液化前后桩-土相互作用机理及桩周土动力衰减规律;(2)砂土液化和上部结构惯性共同作用下桩基内力分布规律;(3)地震引起的液化场地中直斜桩的受力破坏机理及斜桩动力p-y曲线的建立;(4)利用现有的大型计算软件进行数值仿真模拟,并力争通过二次开发建立与实际情况相吻合的模型及参数,为工程中的桩基抗震设计提供理论参考。
Abstract:
In this paper, based on the application background of lateral resistance and seismic design method of pile foundation in liquefiable soil, and the current situation of the seismic research of the pile foundation is summarized and evaluated. On this basis, it is pointed that several key problems of pile need to be further studied under the condition of seismic liquefaction. Mainly out includes:(1) The mechanism of pile-soil interaction and the dynamic attenuated law of soil around pile before and after the liquefaction of sand under different seismic intensity; (2) The combined influence of sand liquefaction and inertia of upper structure on the distribution of internal force for pile; (3) The failure mechanism of vertical and batter pile in liquefaction site caused by earthquake, and establishment of p-y curve of batter pile; (4) The existing large-scale numerical calculation software is used for numerical simulation and try hard to set up the model and parameters which consistent with the actual situation are established through the secondary development, which provide the theoretical reference for the pile foundation design in engineering.

参考文献/References:

[1] 陈颙, 陈运泰, 张国民, 等. "十一·五"期间中国重大地震灾害预测预警和防治对策[J]. 灾害学, 2005, 20(3):1-14. CHEN Yong, CHEN Yuntai, ZHANG Guomin, et al. Forecast and early-warning and preparedness measures for great earthquake disasters in China during the period of the "11th five-year plan"[J]. Journal of Catastro Phology, 2005, 20(3):1-14. (in Chinese)
[2] Ashour M, Helal A. Pre-liquefaction and post-liquefaction responses of axially loaded piles in sands[J]. International Journal of Geomechanics, 2017, 17(9):04017073.
[3] Mohanty P, Dutta S C, Bhattacharya S. Proposed mechanism for mid-span failure of pile supported river bridges during seismic liquefaction[J]. Soil Dynamics and Earthquake Engineering, 2017, 102:41-45.
[4] 刘惠珊. 桩基抗震设计探讨-日本阪神大地震的启示[J]. 工程抗震, 2000, 22(3):27-32. LIU Huishan. A discussion on seismic design of pile foundation[J]. Earthquake Resistant Engineering, 2000, 22(3):27-32.(in Chinese)
[5] Munenori H, Akihiko U, Junryo O. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3):107-115.
[6] 丁剑霆, 姜淑珍, 包峰. 唐山地震桥梁震害回顾[J]. 世界地震工程, 2006, 22(1):68-71. DING Jianting, JIANG Shu zhen, BAO Feng. Review of seismic damage to bridges in Tangshan earthquake[J]. Word Earthquake Engineering, 2006, 22(1):68-71.(in Chinese)
[7] Ledezma C. Lessons from the Seismic performance of pile-supported bridges affected by liquefaction during the M8.82010 Maule Chile earthquake[C]//International Conference on Case Histories in Geotechnical Engineering. Chicago:Missouri University of Science and Technology, 2013, 1-10.
[8] Mitchell D, Huffman S, Tremblay R, et al. Damage to bridges due to the 27 February 2010 Chile earthquake[J]. Canadian Journal of Civil Engineering, 2013, 40(8):675-692.
[9] Wotherspoon L, Bradshaw A, Green R, et al. Performance of bridges during the 2010 Darfield and 2011 Christchurch Earthquakes[J]. Seismological Research Letters, 2011, 82(6):950-964.
[10] Nakai S, Kanek O, Abe A, et al. A study on damage and its factor of pile foundations during the 2011 off the pacific coast of Tohoku earthquake:Part 1 Research objuctives and outline of damage to pile foundations[C]//Summaries of technical papers of annual meeting. Janpan:Architectural Institute of Japan, 2014:695-696.
[11] Schlechter S M, Dickenson S E, McCullough N J, et al. Influence of batter piles on the dynamic behavior of pile-supported Wharf structures[C]//Ports Conference 2004. Houston:ASCE, 2004.
[12] Bardi J C, Ruiz G P, Kumar V K. Manzanillo Mexico’s SSAMM Terminal:Lessons Learned from 1995 and 2003 Earthquakes[C]//Ports Conference 2004. Houston:ASCE, 2004.
[13] Mondal G, Rai D C. Performance of harbour structures in Andaman Islands during 2004 Sumatra earthquake[J]. Engineering Structures, 2008, 30(1):174-182.
[14] 李颖, 贡金鑫. 有斜桩和无斜桩高桩码头地震反应的非线性有限元分析[J]. 水运水利工程学报, 2011(2):1-13. LI Ying, GONG Jinxin. Nonlinear finite element analysis for seismic performance of wharf structures with and without batter piles attached[J]. Hydro-Science and Engineering, 2011(2):1-13.(in Chinese)
[15] 王维铭, 袁晓铭, 孟上九, 等. 汶川Ms8.0级大地震中成都地区液化特征研究[J]. 地震工程与工程振动, 2011, 31(4):137-142. WANG Weiming, YUAN Xiaoming, MENG Shangjiu, et al. Liquefaction characteristics in Chengdu region in Ms8.0 Wenchuan earthquake[J]. Earthquake Engeineering and Engineering Dynamics, 2011, 31(4):137-142.(in Chinese)
[16] 刘惠珊, 翁鹿年, 王承春. 近年地震中的液化侧向扩展与岸坡滑塌[J]. 工程勘察, 1991, (03):16-20. LIU Huishan, WENG Lunian, WANG Chengchun. Lateral spreading and slope falling caused by seismic liquefaction recently[J]. Engineering Exploration, 1991, (3):16-20.(in Chinese)
[17] Hamada M. Large ground deformations and their effects on lifelines:1964 Niigata earthquake, case studies of liquefaction and lifeline performance during past earthquakes[R]. Japanese Case Studies, 1992:1-123.
[18] Meymand P J. Shaking table scale model tests of non-linear soil-pile-superstructure interaction in soft clay[D]. Berkeley:University of California, 1998.
[19] Bhattacharya S, Madabhushi S P G. An alternative mechanism of pile failure in liquefiable deposits during earthquakes[J]. Geotechnique, 2004, 54(3):203-213.
[20] Koyamada K, Miyamoto Y, Tokimatsu K. Field investigation and analysis study of damaged pile foundation during the 2003 Tokachi-Oki Earthquake[C]//Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. California:University of California, 2005:97-108.
[21] Moriguchi S, Yashima A, Sawada K. CIP-based large deformation analysis of geomaterials[C]//National Congress of Theoretical and Applied Mechanics. Japan:National Committee for IUTAM, 2006, 62-62.
[22] 王青桥, 韦晓, 王君杰. 桥梁桩基震害特点及其破坏机理[J]. 震灾防御技术, 2009, 4(2):167-173. WANG Qingqiao, WEI Xiao, WANG Junjie. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4(2):167-173.(in Chinese)
[23] Dash S R, Gocvindaraju L, Bhattacharya S. A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2):333-346.
[24] 唐亮, 凌贤长, 徐鹏举, 等. 可液化场地桥梁群桩-独柱墩结构地震反应振动台试验研究[J]. 土木工程学报, 2009, 42(11):102-108. TANG Liang, LING Xianzhang, XU Pengju, et al. Shaking table tests for seismic response of pile-supported bridge structure with single-column pier in liquefiable ground[J]. China Civil Engineering Journal, 2009, 42(11):102-108.(in Chinese)
[25] Cubrinovski M, Winkley A, Haskell J, et al. Spreading-induced damage to short-span bridges in christchurch, New Zealand[J]. Earthquake Spectra, 2014, 30(1):57-83.
[26] Franke K W, Rollins K M. Lateral spread displacement and bridge foundation case histories from the 1991 magnitude 7.6 earthquake near Limón, Costa Rica[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(6):05017002.
[27] Ledezma C A, Gonzalez D J. Simplified evaluation of the seismic performance of three pile-supported bridges affected by liquefaction during the M8.8 Maule Chile earthquake[C]//10th U.S. National Conference on Earthquake Engineering. Anchorage:Earthquake? Engineering Research Institute, 2014.
[28] Cubrinovski M, Bray J D, Torre C D L, et al. Liquefaction effects and associated damages observed at the wellington centreport from the 2016 Kaikoura earthquake[J]. Bulletin of the New Zealand Society for Earthquake Enginneering, 2017, 50(2):152-173.
[29] Miyajima M, Kitaura M, Ando K. Experiments on liquefaction-induced large ground deformation[R]. Proceedings of the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Counter measures for Soil Liquefaction. Technical Report NCEER, New York, 1991, 1:269-278.
[30] 黄雨, 郝亮. 液化地基中桩的破坏机理研究进展[J]. 工程地质学报, 2008, 16(2):184-189. HUANG Yu, HAO Liang. Advances in failure mechanisms of pile foundations in liquefaction soils[J]. Journal of Engineering Geology, 2008, 16(2):184-189.(in Chinese)
[31] 凌贤长, 唐亮, 苏雷, 等. 中日规范中关于液化和侧向扩流场地桥梁桩基抗震设计考虑之比较[J]. 防灾减灾工程学报, 2011, 31(5):490-495. LING Xianzhang, TANG Liang, SU Lei, et al. Comparison of seismic design considerations between Chinese and Japanese seismic design codes for bridge pile foundation in liquefying ground and lateral spreading ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5):490-495.(in Chinese)
[32] Choobbasti A J, Saadati M, Tavakoli H R. Seismic response of pile foundations in liquefiable soil:parametric study[J]. Arabian Journal of Geosciences, 2012, 5(6):1307-1315.
[33] Samui P, Bhattacharya S, Sitharam T G. Support vector classifiers for prediction of pile foundation performance in liquefied ground during earthquakes[J]. International Journal of Geotechnical Earthquake Engineering, 2012, 3(2):42-59.
[34] Su L, Tang L, Ling X, et al. Pile response to liquefaction-induced lateral spreading:a shaketable investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 82:196-204.
[35] Li G, Motamed R. Finite element modeling of soil-pile response subjected to liquefaction-induced lateral spreading in a large-scale shake table experiment[J]. Soil Dynamics and Earthquake Enginering, 2017, 92:573-584.
[36] 凌贤长, 郭明珠, 王东升, 等. 液化场地桩基桥梁震害响应大型振动台模型试验研究[J]. 岩土力学, 2006, 27(1):7-10, 22. LING Xianzhang, GUO Mingzhu, WANG Dongsheng, et al. Large-scale shaking table model test of seismic response of bridge of pile foundation in ground of liquefaction[J]. Rock and Soil Mechanics, 2006, 27(1):7-11,22.(in Chinese)
[37] 黄占芳, 王显耀, 吴植安, 等. 液化砂土中单桩地震响应振动台试验研究[J]. 振动与冲击, 2012, 31(20):189-192. HUANG Zhanfang, WANG Xianyao, WU Zhian, et al. Shaking table test for single pile-soil dynamic interaction in liquefied foundation soil[J]. Vibration and Shock, 2013, 31(20):189-192.(in Chinese)
[38] 唐亮, 凌贤长, 徐鹏举,等. 可液化场地高承台群桩-土-桥梁结构地震相互作用振动台试验[J]. 中国公路学报, 2010, 23(4):51-57. TANG Liang, LING Xianzhang, XU Pengju, et al. Shaking table test for seismic interaction of pile groups-soil-bridge structure with elevated cap in liquefiable ground[J]. China Journal of Highway and Transport, 2010, 23(4):51-57.(in Chinese)
[39] 刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12):2326-2331. LIU Xing, WANG Rui, ZHANG Jianmin. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12):2326-2331.(in Chinese)
[40] 戴启权, 钱德玲, 张泽涵, 等. 液化场地超高层建筑群桩基础动力响应试验研究[J]. 岩石力学与工程学报, 2015, 34(12):2572-2579. DAI Qiquan, QIAN Deling, ZHANG Zehan, et al. Experimental resrarch on dynamic response of pile group of super highrise building on liquefiable ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12):2572-2579.(in Chinese)
[41] Chun Hui L, Liang T, Xian Zhang L, et al. Investigation of liquefaction-induced lateral load on pile group behind quay wall[J]. Soil Dynamics and Earthquake Engineering, 2017, 102:56-64.
[42] Fiegel G L, Kutter B L. Liquefaction-induced lateral spreading of mildly sloping ground[J]. Jounal of Geotechnical Engineering, 1994, 120(12):2236-2243.
[43] FinnWDL, FujitaN. Piles in liquefaction:seismic analysis and design issus[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9):731-742.
[44] Abdoun T, Dobry R. Evaluation of pile foundtion response to lateral spreading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9):1051-1058.
[45] 汪明武, Tobita Tetsuo, Iai Susumu. 强震动条件下的桩土相互作用动态土工离心试验研究[J]. 岩石力学与工程学报, 2005, 24(增刊2):5555-5560. WANG Mingwu, Tobita Tetsuo, Iai Susumu. Centrifuge modeling of soil-pile interaction in liquefiable soils subjected to strong motion[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2):5555-5560.(in Chinese)
[46] 苏栋, 李相菘. 可液化土中单桩地震响应的离心机试验研究[J]. 岩土工程学报, 2006, 28(4):423-427. SU Dong, LI Xiangsong. Centrifuge investigation on seismic response of single pile in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4):423-427.(in Chinese)
[47] 王睿, 张建民, 张嘎. 侧向流动地基单桩基础离心机振动台试验研究[J]. 工程力学, 2012, 29(10):98-105. WANG Rui, ZHANG Jianmin, ZHANG Ga. Centrifuge shaking table test on single pile lateral spreading soil[J]. Engineering Mechanics, 2012, 29(10):98-105.(in Chinese)
[48] Rui W, Xing L, Jian Min Z. Numerical analysis of the seismic inertial and kinematic effects on pile bending moment in liquefiable soils[J]. Acta Geotechnica, 2016, 12(4):773-791.
[49] Hussien M N, Tobita T, Iai S, et al. Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments[J]. Soil Dynamics and Earthquake Engineering, 2016, 89:75-84.
[50] O’Rourke T D, Meyersohn W D, Shiba Y, et al. Evaluation of pile response to liquefaction-induced lateral spread[J]. Technical Report Nceer, 1994, 94:457-479.
[51] Haldar S, Sivakumar Babu G L. Failure mechanisms of pile foundations in liquefiable soil:parametric study[J]. International Journal of GeomeChanics, 2010, 10(2):74-84.
[52] El Shamy U, Zeghal M, Dobry R, et al. Micromechanical aspects of liquefaction-induced lateral spreading[J]. International Journal of Geomechanics, 2010, 10(5):190-201.
[53] Shao Q, Tang X W, Bai X. Nonlinear numercal analysis of piles-soil interaction in lateral spreading of liquefied ground[C]//2011 International Conference. Xianning:IEEE, 2011:1434-1437.
[54] 徐自国, 宋二祥. 刚性桩复合地基抗震性能的有限元分析[J]. 岩土力学, 2004, 25(2):179-184. XU Ziguo, SONG Erxiang. Finite element analysis for seismic response of rigid pile composite foundations[J]. Rock and Soil Mechanics, 2004, 25(2):179-184.(in Chinese)
[55] 黄雨, 八嶋厚, 张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J]. 岩土工程学报, 2005, 27(6):646-651. HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6):646-651.(in Chinese)
[56] 李耕宇, 胡晓敏, 张嵘峰等. 地震液化对桥梁桩基础极限承载力的影响[J]. 武汉理工大学学报, 2006, 30(6):1044-1047. LI Gengyu, HU Xiaomin, ZHANG Rongfeng, et al. Research on the transverse limit bearing weight of the pile foundation of the bridges aroused by the earthquake liquefying[J]. Journal of Wuhan University of Technology, 2006, 30(6):1044-1047.(in Chinese)
[57] 胡春林, 杨小卫. 砂土液化场地桩基地震反应分析[J]. 振动与冲击, 2007, 26(2):133-137. HU Chunlin, YANG Xiaowei. Analysis of seismic response on pile in liquefiable site[J]. Vibration and Shock, 2007, 26(2):133-137.(in Chinese)
[58] 唐亮, 凌贤长, 徐鹏举,等. 液化场地桩-土地震相互作用振动台试验数值模拟[J]. 土木工程学报, 2012, 45(S1):302-306,311. TANG Liang, LING Xianzhang, XU Pengju, et al. Numerical simulation of shaking table test for seismic soil-pile interaction in liquefying ground[J]. China Civil Engineering Journal, 2012, 45(S1):302-306,311.(in Chinese)
[59] 马亢, 裴建良. 桩筏基础-土动力相互作用的离心模型试验研究[J]. 岩石力学与工程学报, 2011, 30(7):1488-1495. MA Kang, PEI Jianliang. Study of dynamic interaction between pile-raft foundation and soft clay by centrifuge model tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7):1488-1495.(in Chinese)
[60] 马亢, 许强, 李庶林, 等. 高低承台桩基地震行为差异研究[J]. 岩石力学与工程学报, 2015, 34(6):1250-1258. MA Kang, XU Qiang, LI Shulin, et al. Study on difference of seismic behavior between high and low raft pattern of pile foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1250-1258.(in Chinese)
[61] 梁发云, 陈海兵, 黄茂松, 等. 结构-群桩基础地震响应离心振动台模型试验[J]. 建筑结构学报, 2016, 37(9):134-141. LIANG Fayun, CHEN Haibing, HUANG Maosong, et al. Model test on seismic response of superstructure and pile group[J]. Journal of Building Structures, 2016, 37(9):134-141.(in Chinese)
[62] 李雨润, 张中乐, 顾宗昂, 等. 分层液化土中桩基侧向动力反应机理试验研究[J]. 防灾减灾工程学报, 2014, 34(1):40-45. LI Yurun, ZHANG Zhongle, GU Zongang, et al. Experimental study of lateral dynamic response mechanism of pile foundation in stratified liquefiable soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(1):40-45.(in Chinese)
[63] 李雨润, 孙伟民, 张建华, 等. 地震作用下群桩水平动力响应特性及p-y 曲线试验研究[J]. 地震工程学报, 2014, 36(3):468-475. LI Yurun, SUN Weimin, ZHANG Jianhua, et al. Experimental study of horizontal dynamic response and p-y curves of piles during earthquakes[J]. China Earthquake Engineering Journal, 2014, 36(3):468-475.(in Chinese)
[64] KT Chau, CY Shen. Nonlinear seismic soil-pile-structure interactions:Shaking table tests and FEM analyses[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2):300-310.
[65] Hsiao J K. Statical analysis of pile groups containing batter piles[J]. Electronic Journal of Structural Engineering, 2012, 12(1):74-81.
[66] Zhang L, McVay M C, Lai P W. Centrifuge modelling of laterally loaded single battered pilesin sands[J]. Canadian Geotechnical Journal, 1999, 36(6):1074-1084.
[67] Zhang L M, McVay M C, Han S J, et al. Effects of dead loads on the lateral response of battered pile groups[J]. Canadian Geotechnical Journal, 2002, 39(3):561-575.
[68] Escoffier S, Chazelas J L, Garnier J. Centrifuge modelling of raked piles[J]. Bulletin of earthquake engineering, 2008, 6(4):689-704.
[69] Giannakou A, Gerolymos N, Gazetas G, et al. Seismic behavior of batter piles:elastic response[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9):1187-1199.
[70] 吕凡任, 陈云敏, 陈仁朋, 等. 任意倾角斜桩承受任意平面荷载的弹性分析[J]. 浙江大学学报, 2004, 38(2):191-194. LU Fanren, CHEN Yunmin, CHEN Renpeng, et al. Analysis of batter pile under arbitrary inclined loads in semi-infinite solid[J]. Journal of Zhejiang University, 2004, 38(2):191-194.(in Chinese)
[71] 袁廉华, 陈仁朋, 孔令刚,等. 轴向荷载对斜桩水平承载特性影响试验及理论研究[J]. 岩土力学, 2013, 34(7):1958-1964. YUAN Lianhua, CHEN Renpeng, KONG Linggang, et al. Test and theoretical research on influence of axial load on lateral bearing capacity of batter piles[J]. Rock and Soil Mechanics, 2013, 34(7):1958-1964.(in Chinese)
[72] Fan-ren L, Ji-ming Y, Yao-hua J. Study on proportional relation of lateral bearing capacity of batter pile by model experiments[C]//Electric Technology and Civil Engineering (ICETCE), 2011 International Conference on. IEEE, 2011:6888-6891.
[73] 吕凡任, 尹继明, 金耀华. 斜桩(曲桩)研究现状和展望[J].中外公路, 2010, 30(3):181-185. LU Fanren, YIN Jiming, JIN Yaohua, et al. Recent advances of batter pile[J]. Journal of China and Foreign Highway, 2010, 30(3):181-185.(in Chinese)
[74] 吕凡任. 倾斜荷载作用下斜桩基础工作性状研究[D]. 杭州:浙江大学, 2004. LU Fanren. Study on behavior of battered piles under inclined load[D]. Hangzhou:Zhejiang University, 2004.(in Chinese)
[75] 吕凡任, 邵红才, 金耀华. 对称双斜桩基础水平承载力模型试验研究[J]. 长江科学院院报, 2013, 30(2):67-70. LV Fanren, SHAO Hongcai, JIN Yaohua. Model test on bearing capacity of symmetrically inclined double pile under horizontal load[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(2):67-70.(in Chinese)
[76] Zheng L, Escoffier S, Kotronis P. Centrifuge modeling of batter pile foundations under earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2016, 88:176-190.
[77] 王建华, 冯士伦. 液化土层中桩基水平承载特性分析[J]. 岩土力学, 2005, 26(10):1597-1601. WANG Jianhua, FENG Shilun. Research on lateral resistance of pile foundation in liquefaction strata[J]. Rock and Soil Mechanics, 2005, 26(10):1597-1601.(in Chinese)
[78] 凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展,2010,40(3):250-262. LING Xianzhang, TANG Liang. Recent advance of p-y curve to model lateral response of pile foundation on liquefied ground[J]. Advances in Mechanics, 2010, 40(3):250-262.(in Chinese)
[79] 袁晓铭, 李雨润, 孙锐. 地面横向往返运动下可液化土层中桩基响应机理[J]. 土木工程学报. 2008, 41(9):102-109. YUAN Xiaoming, LI Yurun, SUN Yui. Mechanism of pile foundation response in liquefiable soils under seismic cyclic ground motion[J]. China Civil Engineering Journal, 2008, 41(9):102-109.(in Chinese)
[80] 李雨润, 袁晓铭, 梁艳. 桩-液化土相互作用p-y 曲线修正计算方法研究[J]. 岩土工程学报, 2009, 31(4):595-599. LI Yurun, YUAN Xiaoming, LIANG Yan. Modified calculation method of p-y curves for liquefied soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4):595-599.(in Chinese)
[81] 李雨润, 魏星, 张中乐, 等. FBG传感系统在桩基侧向动力响应中的应用研究[J]. 地震工程与工程振动, 2013, 33(2):111-117. LI Yurun, WEI Xing, ZHANG Zhongle, et al. Research on lateral dynamic responses of pile foundations by using FBG sensing system[J]. Earthquake Engeineering and Engineering Dynamics, 2013, 33(2):111-117.(in Chinese)
[82] 孟庆娟, 王建华. 饱和砂土振动液化过程中桩的响应数值模拟[J]. 中国港湾建设, 2012(2):9-12. MENG Qingjuan, WANG Jianhua. Numerical Research on Pile Response during Vibro-liquefaction of Saturated Sands[J]. China Harbour Engineering, 2012(2):9-12.(in Chinese)
[83] 汪云龙, 轩浩, 付海清. 基于光栅传感技术的模型桩弯曲变形及刚度测试方法[J]. 自然灾害学报, 2016, 25(4):120-123. WANG Yunlong, XUAN Hao, FU Haiqing. Measuring method of bending deformation and stiffness of model pile based on grating sensor technique[J]. Journal of Natural Disasters, 2016, 25(4):120-123.(in Chinese)
[84] 高新文. 地震作用下可液化土层水平受荷桩基力学响应分析[J]. 地震工程与工程振动, 2016, 36(3):102-110. GAO Xinwen. Mechanical response of horizontal loaded pile in liquefiable soil under earthquake load[J]. Earthquake Engeineering and Engineering Dynamics, 2016, 36(3):102-110.(in Chinese)
[85] Dash S, Rouholamin M, Lombardi D, et al. A practical method for construction of p-y curves for liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:478-481.

相似文献/References:

[1]李雨润,张中乐,魏星,等.FBG传感系统在桩基侧向动力响应中的应用研究[J].地震工程与工程振动,2013,33(02):185.
 LI Yurun,ZHANG Zhongle,WEI Xing,et al.Research on lateral dynamic responses of pile foundations by using FBG sensing system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):185.
[2]包日东,闻邦椿.液化土中输流管道的竖向地震响应研究[J].地震工程与工程振动,2008,28(04):173.
 BAO Ridong,WEN Bangchun.Study on seismic response of buried pipeline in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(06):173.
[3]李雨润,邹泽,潘鑫鑫,等.对称双斜桩侧向响应振动台试验与数值模拟[J].地震工程与工程振动,2018,38(05):221.[doi:10.13197/j.eeev.2018.05.221.liyr.026]
 LI Yurun,ZOU Ze,PAN Xinxin,et al.Lateral response of symmetrically assembled double batter piles of shaking table test and numerical simulation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(06):221.[doi:10.13197/j.eeev.2018.05.221.liyr.026]
[4]张健,李雨润,戎贤,等.液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究[J].地震工程与工程振动,2021,41(03):235.[doi:10.13197/j.eeev.2021.03.235.zhangj.023]
 ZHANG Jian,LI Yurun,RONG Xian,et al.Dynamic response of pile cap and distribution law of pile bending moment for batter pile group in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2021,41(06):235.[doi:10.13197/j.eeev.2021.03.235.zhangj.023]

备注/Memo

备注/Memo:
收稿日期:2018-02-07;改回日期:2018-05-11。
基金项目:国家自然科学基金项目(51778207);河北省自然科学基金项目(E2018202107)
作者简介:李雨润(1978-),男,教授,博士,主要从事土动力学与桩基抗震研究.E-mail:iemlyr7888@hebut.edu.cn
通讯作者:张健(1991-),男,博士研究生,主要从事桩基抗震方面研究.E-mail:201521601031@stu.hebut.edu.cn
更新日期/Last Update: 1900-01-01