[1]陈关宝,于德介.基于多尺度线调频基稀疏信号分解的线性时变SDOF系统参数识别[J].地震工程与工程振动,2013,33(04):100-108.
 CHEN Guanbao,YU Dejie.The parameter identification of linear time-varying SDOF systems based on multi-scale chirplet sparse signal decomposition[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(04):100-108.
点击复制

基于多尺度线调频基稀疏信号分解的线性时变SDOF系统参数识别
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
33
期数:
2013年04期
页码:
100-108
栏目:
出版日期:
2013-08-28

文章信息/Info

Title:
The parameter identification of linear time-varying SDOF systems based on multi-scale chirplet sparse signal decomposition
作者:
陈关宝 于德介
湖南大学 汽车车身先进设计制造国家重点实验室, 湖南 长沙 410082
Author(s):
CHEN Guanbao YU Dejie
State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
关键词:
多尺度线调频基稀疏信号分解单自由度系统时变系统参数识别
Keywords:
multi-scale chirpletsparse signal decompositionSDOF systemtime-varying systemparameter identification
分类号:
P315.61;TH113
摘要:
对于参数时变的SDOF系统,提出一种基于多尺度线调频基稀疏信号分解的参数识别方法。该方法能将SDOF系统的强迫振动响应自适应地分解为稳态响应和瞬态响应。从系统的稳态响应可得到外部激振力的频率估计;对系统的瞬态响应用多尺度线调频基稀疏信号分解方法进一步分解,可得到系统的瞬时频率估计,进而可得到系统的刚度和阻尼,从而实现对SDOF系统的参数识别。刚度线性变化、刚度突变与刚度周期缓变3种情况下的参数识别仿真算例表明,本文方法能有效识别线性时变SDOF系统参数,具有重要的工程应用价值。
Abstract:
For the SDOF system that has time-varying parameters, a method for structural parameter identification based on multi-scale chirplet sparse signal decomposition (MCSSD) is proposed. In the proposed method, forced vibration response of an SDOF system is decomposed adaptively into steady state response and transient response. From the steady state response,the estimation of the frequency of exciting force can be obtained. By decomposing the transient response using MCSSD,the system’s instantaneous frequency can be obtained and then,the system’s stiffness and damping can be identified. Numerical simulation examples show that the proposed method can indentify the parameters of linear time-varying SDOF systems effectively.

参考文献/References:

[1] 李宏男,李东升.土木工程结构安全性评估健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90. LI Hongnan,LI Dongsheng.Safety assessment,health monitoring and damage diagnosis for stuctures in civil engineering[J].Journal of Earthquake Engineering and Engineering Vibration,2002,22(3):82-90.(in Chinese)
[2] 韩建平,李达文,王飞行.基于Hilbert-Huang变换和随机子空间识别的模态参数识别[J].地震工程与工程振动,2010,30(1):53-59. HAN Jianping,LI dawen,WANG Feixing.Modal parameter identifiction based on Hilbert-Huang transform and stochastic subspace identification[J].Journal of Earthquake Engineering and Engineering Vibration,2010,30(1):53-59.(in Chinese)
[3] Wang Shibin,Huang Weiguo,Zhu Z K. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing,2011(25): 1299-1320.
[4] Ong K C G,Wang Zengrong,Maalej M. Adaptive magnitude spectrum algorithm for Hilbert-Huang transform based frequency identification[J]. Engineering Structures,2008(30):33-41.
[5] Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series, 1998, 454: 903-995.
[6] 黄天立,邱发强,楼梦麟. 基于改进HHT方法的密集模态结构参数识别[J]. 中南大学学报:自然科学版,2011,42(7):2054-2062 HUANG Tianli,QIU Faqiang,LOU Menglin.Application of an improved HHT method for modal parameters identification of structures with closely spaced modes[J].Journal of Central South University:Science and Technology,2011,42(7):2054-2062.(in Chinese)
[7] Ding Y,Law S S. Structural damping identifi cation based on an iterative regularization method[J]. Journal of Sound and Vibration,2011,330:2281-2298.
[8] 许 鑫, 史治宇. 状态空间下基于小波变换的时变系统参数识别 [J].振动工程学报, 2010, 23 (4): 416-419. XU Xin,SHI Zhiyu.Prameter identification of time-varying system based on state space and wavelet transform method[J].Journal of Vibration Engineering,2010,23(4):416-419.(in Chinese)
[9] Bao Chunxiao,Hong Hao,Ii Zhong xian,et al. Time-varying system identification using a newly improved HHT algorithm[J]. Computers and Structures,2009,87:1611-1623.
[10] Candas E J,Charhon P R,Helgason H. Detecting highly oscillatory signals by chirplet path pursuit[J]. Applied and Computational Harmonic Analysis,2008,24(1):14-40.
[11] 彭富强,于德介,刘 坚.一种基于多尺度线调频基的稀疏信号分解方法[J].振动工程学报,2010,23(3):333-338. PENG Fuqiang,YU Dejie,LIU Jian.Sparse signal decomposition method dased on muli-scale shirplet[J].Journal of Vibration Engineering,2010,23(3):333-338.(in Chinese)
[12] LUO Jiesi,YU Dejie,PENG Fuqiang.Signal sepatation and instantaneous frequency estimation base on multi scale chirplet sparse signal decomposition[J].ACTA Electronica Sinica,2010-38(10):2224-2228.

备注/Memo

备注/Memo:
收稿日期:2012-5-11;改回日期:2012-7-10。
基金项目:国家自然科学基金项目(50875078)
作者简介:陈关宝(1988-),男,硕士研究生,主要研究方向为状态检测与故障诊断.E-mail:nalson123@126.com
通讯作者:于德介(1957-),男,教授,博士生导师,主要从事振动与噪声控制研究.E-mail:djyu@hnu.edu.cn
更新日期/Last Update: 1900-01-01