[1]巴振宁,赵靖轩,吴孟桃,等.基于逆断层动力学模型的三维山体地震动谱元法模拟[J].地震工程与工程振动,2021,41(03):032-42.[doi:10.13197/j.eeev.2021.03.32.bazn.004]
 BA Zhenning,ZHAO Jingxuan,WU Mengtao,et al.Three-dimensional ground motion spectral element method simulation based on inverse fault dynamics model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2021,41(03):032-42.[doi:10.13197/j.eeev.2021.03.32.bazn.004]
点击复制

基于逆断层动力学模型的三维山体地震动谱元法模拟
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
41
期数:
2021年03
页码:
032-42
栏目:
论文
出版日期:
2021-06-30

文章信息/Info

Title:
Three-dimensional ground motion spectral element method simulation based on inverse fault dynamics model
作者:
巴振宁12 赵靖轩1 吴孟桃12 梁建文12 塔拉3
1. 天津大学 土木系, 天津 300354;
2. 滨海土木工程结构与安全教育部重点实验室, 天津 300350;
3. 中国地震局第一监测中心, 天津 300171
Author(s):
BA Zhenning12 ZHAO Jingxuan1 WU Mengtao12 LIANG Jianwen12 TA La3
1. Department of Civil Engineering, Tianjin University, Tianjin 300354, China;
2. Key Laboratory of Coast Civil Structure Safety of the Ministry of Education, Tianjin 300350, China;
3. The First Monitoring and Application Center CEA, Tianjin 300171, China
关键词:
谱元法动力学逆断层地形效应近断层地震动地震波散射
Keywords:
spectral element methoddynamic inverse faulttopography effectnear-fault ground motionseismic scattering
分类号:
P315.9
DOI:
10.13197/j.eeev.2021.03.32.bazn.004
摘要:
逆冲断层是常见的断层错动形式,具有释放地震能量大破坏力强的特征,同时大量震害调查和强震观测表明,山体地形对地震动的显著放大效应会进一步加重震害,然而目前还鲜有针对逆冲断层作用下山体地震动模拟的研究。文中即采用谱元法,建立含动力学逆断层震源和三维山体地形的整体物理模型,研究了动力学逆断层地震作用下的三维山体动力响应。文中以高斯型山体为例,对其近断层地震动特性进行了分析,并着重探讨了三维山体地形对逆断层地震动产生的影响。研究表明:(1)动力学逆断层模型很好的契合了近断层地震动特性,在模拟中重现了近断层地震动的方向性效应、上盘效应、集中性效应和地面永久位移等基本特征;(2)山体对近断层地震动放大效果显著,对比无山体情况,山体加速度和位移峰值分别放大了1.79和1.21倍;同时加速度峰值随着山体高程的增加而增加,与山脚处加速度峰值相比,山顶和山腰处的加速度峰值分别放大了2.05和1.28倍;(3)山体地形引发的地震波散射和衍射效应不仅放大了山体和山体毗邻地表的地震动响应,同时延长了地震动在该区域内的响应时间。
Abstract:
As a common form of fault dislocation, thrust fault has the characteristics of releasing seismic energy and strong destructive power. Meanwhile, a large number of seismic damage investigations and strong earthquake observations show that the significant amplification effect of mountain terrain on ground motion will further aggravate earthquake damage. However, there are few studies on the simulation of mountain ground motion under thrust fault. In this paper, the spectral element method is adopted to establish the overall physical model including dynamic reverse fault source and three-dimensional mountain terrain, and the three-dimensional mountain dynamic response under the action of dynamic reverse fault earthquake is studied. This paper takes the Gaussian mountain as an example, analyzes its near-fault ground motion characteristics, and emphatically discusses the influence of three-dimensional mountain terrain on the ground motion of reverse fault. The results show that :(1) the dynamic reverse fault model fits the characteristics of near-fault ground motion well, reproducing the basic characteristics of near-fault ground motion, such as directional effect, wall effect, concentration effect and permanent displacement of the ground. (2) The peak of acceleration and displacement of the mountain are 1.79 and 1.21 times larger than those without a mountain. At the same time, the peak acceleration increases with the elevation of the mountain, and the peak acceleration at the top and the middle of the mountain is 2.05 and 1.28 times larger than that at the foot of the mountain. (3) The seismic wave scattering and diffraction effect caused by mountain terrain not only magnifies the ground motion response of mountain and surrounding flat terrain, but also extends the response time of ground motion in mountain and surrounding flat terrain.

参考文献/References:

[1] 李方杰. 局部不规则场地对Rayleigh波的散射[D].天津:天津大学,2005. LI Fangjie. Scattering of Rayleigh Waves by Local Irregular Sites[D]. Tianjin:Tianjin university, 2005. (in Chinese)
[2] 梁轩, 邢昊, 周俊, 等. 梯形山体地形效应及对周围场地地震反应的影响[J]. 地震工程与工程振动, 2016, 36(6):45-55. LIANG Xuan, XING Hao, ZHOU Jun, et al. Trapezoid mountain topographic effects and their impacts on seismic response of surrounding site[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(6):45-55. (in Chinese)
[3] 巴振宁, 吴孟桃, 梁建文. 坡体几何参数与弹性模量对岩质斜坡地震动力响应的影响:IBEM求解[J]. 岩石力学与工程学报, 2019, 38(8):1578-1592. BA Zhenning, WU Mengtao, LIANG Jianwen. Influence of geometric parameters and elastic modules on seismic dynamic response of rock slopes by IBEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8):1578-1592. (in Chinese)
[4] 刘晶波. 局部不规则地形对地震地面运动的影响[J]. 地震学报, 1996, 8(2):239-245. LIU Jingbo. Influence of local irregular topography on seismic ground motion[J]. Acta Seismologica Sinica, 1996, 8(2):239-245. (in Chinese)
[5] 郝明辉, 张郁山. 凸起地形对地震动特性的影响[J]. 地震学报, 2014, 36(5):883-894,981. HAO Minghui, ZHANG Yushan. Analysis of terrain effect on the properties of ground motion[J]. Acta Seismologica Sinica, 2014, 36(5):883-894,981. (in Chinese)
[6] 王伟. 地震动的山体地形效应[D]. 哈尔滨:中国地震局工程力学研究所, 2011. WANG Wei. Effect of Hill Topography on Ground Motion[D]. Harbin:Harbin Institute of Engineering Mechanics China Earthquake Administration, 2011. (in Chinese)
[7] LEE S J, KOMATITSCH D, HUANG B S, et al. Effect of topography on seismic-wave propagation:an example from northern Taiwan[J]. Bulletin of the Seismological Society of America, 2009, 99(1):314-325.
[8] 胡元鑫, 刘新荣, 罗建华, 等. 汶川震区地震动三维地形效应的谱元法模拟[J]. 兰州大学学报(自然科学版), 2011, 47(4):24-32. HU Yuanxin, LIU Xinrong, LUO Jianhua, et al. Simulation of three-dimensional topographic effects on seismis ground motion in Wenchuan earthquake region based upon the spectral-element method[J]. Journal of LanZhou University (Nature Sciences), 2011, 47(4):24-32. (in Chinese)
[9] HUANG H Q, ZHANG Z G, CHEN X F. Investigation of topographical effects on rupture dynamics and resultant ground motions[J]. Geophysical Journal International, 2018, 212(1):311-323.
[10] 王铭锋, 郑傲, 于湘伟, 等. 局部山体地形对断层动力学破裂过程的影响研究[J]. 地震学报, 2018, 40(6):51-66,145. WANG Mingfeng, ZHENG Ao, YU Xiangwei, et al. Study on influence of local mountains topography to fault dynamics rupture[J]. Acta Seismologica Sinica, 2018, 40(6):51-66,145. (in Chinese)
[11] 徐泽龙. 逆断层错动引起上覆土层破裂的模型试验研究[D].杭州:浙江大学, 2015. XU Zelong. Experimental Study on the Fault Rupture of Overlying Soil Induced by Reverse Fault Slip[D]. Hangzhou:Zhejiang University, 2015. (in Chinese)
[12] DIMITRI K, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal of the Royal Astronomical Society, 1999, 139(3):806-822.
[13] KANEKO Y, LAPUSTA N, AMPUERO J P. Spectral-element modeling of spontaneous earthquake rupture on rate and state faults:Effect of velocity-strengthening friction at shallow depths[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B9).
[14] 丁志华, 周红, 蒋涵. 三维台阶地形地震动效应研究[J].地震学报, 2014, 36(2):184-199,339. DING Zhihua, ZHOU Hong, JIANG Han. Effect of 3-D step topography on ground motion[J]. Acta Seismologica Sinica, 2014, 36(2):184-199,339. (in Chinese)
[15] GALVEZ P, AMPUERO J P, DALGUER L A, et al. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method[C]//AGU Fall Meeting Abstracts, 2011.
[16] ANDREWS D J. Rupture propagation with finite stress in antiplane strain[J]. Journal of Geophysical Research, 1976, 1(20):3575-3582.
[17] CHALJUB E, DIMITRI K, VILOTTE J P. The spectral element method:An efficient tool to simulate the seismic response of 2-D and 3-D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2):368-392.
[18] ELY G P, DAY S M, MINSTER J B. A support-operator method for 3-D rupture dynamics[J]. Geophysical Journal of the Royal Astronomical Society, 2009, 177(3):1140-1150.
[19] AMPUERO J P, MARTIN K, CHRISTIAN P, et al. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. Journal of Geophysical Research. Solid Earth, 2012, 117(2).
[20] CUPILLARD P, DELAVAUD E, BURGOS G, et al. RegSEM:a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale[J]. Geophys. J. Int.,2012, 188(3):1203-1220.
[21] 刘中宪, 刘明珍, 韩建斌. 近断层沉积盆地强地震动谱元模拟[J]. 世界地震工程, 2017, 33(4):76-86. LIU Zhongxian, LIU Mingzhen, HAN Jianbin, Spectral-element simulation of strong ground motion in the near-fault alluvia bain[J]. World Earthquake Engineering, 2017, 33(4):76-86. (in Chinese)
[22] 冯启民, 邵广彪. 近断层地震动速度、位移峰值衰减规律的研究[J]. 地震工程与工程振动, 2004, 24(4):13-19,24. FENG Qimin, SHAO Guangbiao. Research on attenuation of near fault peak strong ground motion velocity and displacement[J]. Earthquake Engineering And Engineering Dynamics, 2004, 24(4):13-19,24. (in Chinese)
[23] AAGAARRD B T, JOHN F H, THOMAS H H. Characterization of near source ground motions with earthquake simulation[J]. Earthquake Spectra, 2001,17(2):177-207.
[24] 刘启方, 袁一凡, 金星,等. 近断层地震动的基本特征[J]. 地震工程与工程振动, 2006, 26(1):1-10. LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near faut ground motion[J]. Earthquake Engineering And Engineering Dynamics, 2006, 26(1):1-10. (in Chinese)
[25] KENNETH D, ERIC M D. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids[J]. Journal of Computational Physics, 2016, 305.

相似文献/References:

[1]禹乐,于彦彦,丁海平.内源作用下盆地倾角对地表地震动放大特征的影响[J].地震工程与工程振动,2020,40(05):097.[doi:10.13197/j.eeev.2020.05.97.yul.010]
 YU Le,YU Yanyan,DING Haiping.Effect of basin slope angle on ground motion amplification characteristics under internal point source[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):097.[doi:10.13197/j.eeev.2020.05.97.yul.010]

备注/Memo

备注/Memo:
收稿日期:2020-07-08;改回日期:2020-10-27。
基金项目:国家自然科学基金项目(51778413)
作者简介:巴振宁(1980-),男,教授,博士,主要从事大尺度复杂场地地震动模拟研究.E-mail:bazhenning_001@163.com
更新日期/Last Update: 1900-01-01