[1]阎西康,周明,杜闯,等.预应力活性粉末混凝土道面板的疲劳损伤试验研究及有限元分析[J].地震工程与工程振动,2021,41(03):043-52.[doi:10.13197/j.eeev.2021.03.43.yanxk.005]
 YAN Xikang,ZHOU Ming,DU Chuang,et al.Fatigue damage test and finite element analysis of prestressed reactive powder concrete pavement[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2021,41(03):043-52.[doi:10.13197/j.eeev.2021.03.43.yanxk.005]
点击复制

预应力活性粉末混凝土道面板的疲劳损伤试验研究及有限元分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
41
期数:
2021年03
页码:
043-52
栏目:
论文
出版日期:
2021-06-30

文章信息/Info

Title:
Fatigue damage test and finite element analysis of prestressed reactive powder concrete pavement
作者:
阎西康1 周明1 杜闯1 温家鹏1 赵国良2 杜二伟3
1. 河北工业大学 土木与交通学院, 天津 300401;
2. 河北水利电力学院 后勤管理处, 河北 沧州 061000;
3. 陕西公路交通科技开发咨询公司, 陕西 西安 710054
Author(s):
YAN Xikang1 ZHOU Ming1 DU Chuang1 WEN Jiapeng1 ZHAO Guoliang2 DU Erwei3
1. College of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China;
2. Logistics Management Office, Hebei University of Water Resource and Electric Power, Cangzhou 061000, China;
3. Shaanxi Highway Transportation Technology Development Constilting Company, Xi’an 710054, China
关键词:
RPC疲劳荷载疲劳性能应力水平有限元分析
Keywords:
RPCfatigue loadfatigue behaviorstress levelfinite element analysis
分类号:
TU378
DOI:
10.13197/j.eeev.2021.03.43.yanxk.005
摘要:
为了研究疲劳荷载对预应力活性粉末混凝土道面板损伤性能的影响,设计4块尺寸为5 m×2.5 m×0.12 m的试件进行试验。试验采用的应力比为0.3,试件经200万次加载后未疲劳破坏。并利用有限元软件Ansys Workbench与疲劳分析软件Ncode Designlife对试件进行了仿真模拟,研究应力水平与损伤之间的关系。结果表明:RPC道面板的损伤主要集中于前20万次的加载过程,且受拉区的损伤要大于受压区,受拉区的跨中位置为疲劳破坏的薄弱位置;预应力对于试件损伤的减少,主要是减少了20万次后加载过程产生的损伤,使得相同等级的RPC平均疲劳寿命提高1.3~1.8倍,破坏时的损伤值减少25%~40%;取0.5作为作为变形模量的极限值,经回归分析提出变形模量的计算表达式;应力水平0.7可作为损伤的拐点,小于0.7时损伤值增长缓慢,疲劳寿命超过200万次,0.7及以上时损伤值成数十倍甚至上百倍增长,疲劳寿命显著下降。
Abstract:
In order to study influence of fatigue load on the damage performance of prestressed reactive powder concrete pavement, four specimens with the size of 5 m×2.5 m×0.12 m were designed for test. The stress ratio used in the test is 0.3, and the specimen has not been fatigue damaged after 2 million times of loading. The strain of concrete and the deflection of specimen are measured during the loading process.In addition, the finite element software ANSYS Workbench and fatigue analysis software ncode Designlife are used to simulate the specien, and relationship between stress level and damage is studied. The results show that: the concrete strain rate, stiffness degradation degree and deformation modulus reflect the change of specimen damage; the damage of RPC pavement is mainly concentrated in the first 200 000 loading processes, and the damage in the tensile zone is greater than that in the compression zone, and the mid span position of the tension zone of the pavement caused by fatigue loading is called the weak position of fatigue failure; the prestressed reduces the damage of specimen, mainly reduces the damage in the loading process after 200 000 times, so that the RPC of the same grade is average The fatigue life is increased by 1.3~1.8 times, and the damage value is reduced by 25%~40%; 0.5 is taken as the limit value of deformation modulus, and the calculation expression of RPC deformation modulus is put forward through regression analysis; the stress level 0.7 can be used as the inflection point of damage, when it is less than 0.7, damage value increases slowly, fatigue life is more than 2 million times, damage value is tens of times or even hundreds of times when it is 0.7 or above, and fatigue life is more than 2 million times, life span decreased significantly.

参考文献/References:

[1] RICHARD P, CHEYREZY M. Composition of reactive powder concrete research[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[2] CANBAZ M. The effect of high temperature on reactive powder concrete[J]. Construction & Building Materials, 2014, 70(70):508-513.
[3] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44-58. ZHENG Wenzhong, LU Xueyuan.Research progress of reactive powder concrete[J]. Journal of Architectural Structure2015, 36(10):44-58.(in Chinese)
[4] YANG Yu, YONG Huadong, ZHOU Youhe. Mechanical behavior in superconducting composite wires[J]. European Journal of Mechanics, 2018, 16(2):191-202.
[5] 张春晓, 杜闯, 李砚召, 等. 预制超高性能混凝土道面临界荷位研究[J]. 防护工程, 2019, 41(1):54-62. ZHANG Chunxiao, DU Chuang, LI Yanzhao, et al.Study on critical load position of precast ultra high performance concrete pavement[J].Protective Engineering, 2019, 41(1):54-62.(in Chinese)
[6] 曹加林, 刘庆娟.机场预应力混凝土道面的脱空适应性有限元研究[J].中外公路, 2015, 35(4):82-84. LIU Jialin, LIU Qingjuan.Finite element study on void adaptability of airport prestressed concrete pavement[J].Chinese and Foreign Highways, 2015, 35(4):82-84.(in Chinese)
[7] 方志, 向宇, 匡镇, 等.钢纤维含量对活性粉末混凝土抗疲劳性能的影响[J].湖南大学学报(自然科学版), 2011, 38(6):6-12. FANG Zhi, XIANG Yu, KUANG Zhen, et al.Effect of steel fiber content on fatigue resistance of reactive powder concrete[J].Journal of Hunan University (Natural Science Edition), 2011, 38(6):6-12.(in Chinese)
[8] 方志, 向宇, 刘传乐.配置碳纤维预应力筋的钢纤维活性粉末混凝土无腹筋梁疲劳性能试验研究[J]. 建筑结构学报, 2013, 34(1):101-107. FANG Zhi, XIANG Yu, LIU Chuan Le.Experimental study on fatigue behavior of steel fiber reinforced reactive powder concrete beams without web reinforcement with CFRP tendons[J].Journal of Architectural Structure, 2013, 34(1):101-107.(in Chinese)
[9] MAKITA T, BRUHWILER E. Damage models for UHPFRC and R-UHPFRC tensile fatigue behavior[J]. Engineering Structures, 2015, 90:61-70.
[10] QI J N, WANG J Q, LI M, CHEN L L.Shear capacity of stud shear with initial damage:Experiment, FEM model and theoretical formulation[J]. Steel and Composite Structure, 2017, 25(1):79-92.
[11] 罗许国, 王义翔, 汪建群.无粘结预应力活性粉末混凝土梁疲劳全过程应力计算方法研究[J].西安建筑科技大学学报(自然科学版), 2019, 51(1):39-45. LUO Xuguo, WANG Yixiang, WANG Jianqun.Study on the calculation method of stress in the whole fatigue process of unbonded prestressed Reactive Powder Concrete Beams[J].Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2019, 51(1):39-45.(in Chinese)
[12] 宋玉普. 混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社, 2006. SONG Yupu.Fatigue Performance and Design Principle of Concrete Structure[M].Beijing:Machinery Industry Press, 2006.(in Chinese)
[13] GB/T 50010-2010混凝土结构设计规程[S].北京:中国建筑工业出版社, 2015. GB/T 50010-2010 Code for Design of Concrete Structures[S].Beijing:China Constrution Industry Press, 2015.(in Chinese)
[14] 孙志林. 路面材料疲劳损伤分析及疲劳寿命评估[J].公路与汽运, 2012, 28(4):115-120.(in Chinese) SUN Zhilin.Fatigue damage analysis and fatigue life evaluation of pavement materials[J].Highway and Automobile Transportation, 2012, 28(4):115-120.(in Chinese)
[15] 周炬, 苏金英. ANSYS Workbench有限元分析实例详解[M]. 北京:人民邮电出版社, 2019. ZHOU Ju, SU Jinying. Detailed Explanation of Finite Element Analysis Example of ANSYS Workbench[M].Beijing:People’s Posts and Telecommunications Press, 2019.(in Chinese)

相似文献/References:

[1]任亮,方志,王诚.考虑双轴水平力耦合效应的RPC箱型桥墩恢复力模型试验研究[J].地震工程与工程振动,2012,32(02):152.
 REN Liang,FANG Zhi,WANG Cheng.Experimental study on the restoring force model of Reactive Powder Concrete box piers under biaxial horizontal loads[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(03):152.
[2]梁岩,班亚云,罗小勇,等.不同荷载模式下锈蚀钢筋力学性能研究[J].地震工程与工程振动,2017,37(04):022.[doi:10.13197/j.eeev.2017.04.22.liangy.003]
 LIANG Yan,BAN Yayun,LUO Xiaoyong,et al.Study on mechanical performance of corroded reinforcement bar under different loading modes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(03):022.[doi:10.13197/j.eeev.2017.04.22.liangy.003]

备注/Memo

备注/Memo:
收稿日期:2020-07-04;改回日期:2020-10-27。
基金项目:国家自然科学基金项目(51878240);天津市企业特派员项目(19JCTPJC56400)
作者简介:阎西康(1966-),男,教授,博士,主要从事工程结构加固与维修、工程施工新技术研究.E-mail:tjsyxk@163.com
通讯作者:周明(1995-),男,硕士研究生,主要从事结构工程、新材料技术研究.E-mail:2543119810@qq.com.
更新日期/Last Update: 1900-01-01