[1]马安财,谭平,周福霖.超高墩大跨铁路连续钢桁梁桥粘滞阻尼消能减震研究[J].地震工程与工程振动,2021,41(03):095-105.[doi:10.13197/j.eeev.2021.03.95.maac.010]
 MA Ancai,TAN Ping,ZHOU Fulin.Study on seismic performance of a viscously damped continuous steel truss girder railway bridge with super-high-piers and long-span[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2021,41(03):095-105.[doi:10.13197/j.eeev.2021.03.95.maac.010]
点击复制

超高墩大跨铁路连续钢桁梁桥粘滞阻尼消能减震研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
41
期数:
2021年03
页码:
095-105
栏目:
论文
出版日期:
2021-06-30

文章信息/Info

Title:
Study on seismic performance of a viscously damped continuous steel truss girder railway bridge with super-high-piers and long-span
作者:
马安财12 谭平34 周福霖134
1. 西安建筑科技大学 土木工程学院, 陕西 西安 710055;
2. 甘肃交通职业技术学院, 甘肃 兰州 730070;
3. 广州大学 广东省地震工程与应用技术重点实验室, 广东 广州 510405;
4. 广州大学 工程抗震减震与结构安全教育部重点实验室, 广东 广州 510405
Author(s):
MA Ancai12 TAN Ping34 ZHOU Fulin134
1. School of Civil Engineering, Xi’ an University of Architecture and Technology, Xi’an 710055, China;
2. Gansu Vocational and Technical College of Communications, Lanzhou 730070, China;
3. Key Laboratory of Earthquake Engineering and Applied Technology in Guangdong Province, Guangzhou University, Guangzhou 510405, China;
4. Key Laboratory of Earthquake Resistance Earthquake Mitigation and Structural Safety Ministry of Education, Guangzhou University, Guangzhou 510405, China
关键词:
超高墩大跨连续钢桁梁桥非比例阻尼消能减震参数优化减震性能
Keywords:
continuous steel truss girder railway bridge with super-high-piers and long-spannon-proportional dampingenergy dissipationparameter optimizationdamping performance
分类号:
U488.13U442.55
DOI:
10.13197/j.eeev.2021.03.95.maac.010
摘要:
针对某超高墩大跨铁路连续钢桁梁桥,建立了考虑桩-土动力相互作用、超高墩几何非线性P-Δ效应的全桥空间有限元模型,考虑了由于粘滞阻尼的非比例阻尼影响,并通过应变能理论将结构不同部位的振型阻尼引入到分析模型中。基于确定的粘滞阻尼器布置方案,研究了阻尼指数和阻尼系数对结构减震的影响规律,采用参数敏感性分析方法对阻尼器参数进行优化,并分析了其减震性能。研究表明:对于文中分析的桥梁,采用速度指数为0.4的粘滞阻尼器可达到最优的减震效果,能够有效降低各墩水平地震作用,并使高度相近的1、4号墩,以及2、3号墩墩底弯矩和墩顶位移趋于均匀;由于固定墩墩底纵向剪力峰值和非减震模型接近,该类型桥的减震控制应以墩底弯矩和墩顶位移为控制目标;对比基于比例阻尼和非比例阻尼分析模型的地震反应,发现考虑非比例阻尼后超高墩大跨桥梁墩底弯矩和墩顶位移均有所增大,且固定墩墩底弯矩增大更显著,建议进行超高墩大跨粘滞阻尼减震桥梁抗震分析时应考虑非比例阻尼。
Abstract:
For the continuous steel truss girder railway bridge with super-high-piers and long-span, a 3-dimensional FEM considering soil-structure interaction and P-Δ effect was established. The influence of non-proportional damping such as viscous damping was considered, the modal damping of different parts of the structure was introduced into the analysis model by strain energy theory. Based on certain layouts of viscous dampers, damping indices were studied and the influence law of damping coefficients on the structural damping was done. The parameter sensitivity analysis method was employed to optimize damper parameters and their damping performance was analyzed. The results show that for the bridge analyzed in this paper, the viscous dampers with velocity indices of 0.4 can achieve the optimal damping effect and effectively reduce the horizontal seismic effect of each pier, and make the bottom moment and top displacement of pier 1 and pier 4, pier 2 and pier 3, which are close to each other, tend to be. As the peak value of longitudinal shear force at the bottom of fixed pier is close to that of the non-damping model, the damping control of this type of bridge should take the bending moment at the bottom of piers and the displacement at the top of piers as the control targets. By comparing the response of the analysis models with proportional damping and non-proportional damping, it is found that the pier bottom moment and the pier top displacement of the long span bridge with ultra-high piers are larger with the consideration of non-proportional damping, especially the increase in the fixed pier bottom moment. It is recommended to consider non-proportional damping in the analysis when building a FEM of a viscously damped bridge with ultra-high piers and long spans. It is suggested that non-proportional damping should be considered in the seismic analysis of super-high-piers and long-span viscous damping Bridges.

参考文献/References:

[1] 王克海. 桥梁抗震研究[M]. 北京:中国铁道出版社, 2014. WANG Kehai. Seismic Research of Bridge[M]. Beijing:China Railway Publishing House, 2014. (in Chinese)
[2] 黄勇, 张良, 乐威杰, 等. 桥梁抗震研究的近期进展[J]. 地震工程与工程振动, 2017,37(3):166-174. HUANG Yong, ZHANG Liang, LE Weijie, et al. Recent development of seismic research on bridge[J]. Earthquake Engineering and Engineering Dynamics,2017,37(3):166-174. (in Chinese)
[3] 夏修身, 崔靓波, 陈兴冲, 等. 长联大跨连续梁桥隔震技术应用研究[J]. 桥梁建设, 2015, 45(4):39-45. XIA Xiushen, CUI Liangbo, CHEN Xingchong, et al. Study of application of seismic isolation techniques for long span and long unit continuous beam bridge[J]. Bridge Construction,2015,45(4):39-45. (in Chinese)
[4] 景铭, 戴君武. 消能减震技术研究应用进展侧述[J]. 地震工程与工程振动, 2017,37(3):103-110. JING Ming, DAI Junwu. New advances of research and applications of seismic energy dissipation technology on 16WCEE[J]. Earthquake Engineering and Engineering Dynamics,2017,37(3):166-174. (in Chinese)
[5] 石岩, 王东升, 韩建平, 等. 张展宏. 桥梁减隔震技术的应用现状与发展趋势[J]. 地震工程与工程振动, 2017,37(5):118-128. SHI Yan, WANG Dongsheng, HAN Janping, et al. Application status of seismic isolation for bridges and its development tendency[J]. Earthquake Engineering and Engineering Dynamics, 2017,37(5):118-128. (in Chinese)
[6] 张永亮, 陈兴冲, 吴海燕. 基于粘滞液体阻尼器的铁路钢桁梁桥减震研究[J]. 世界地震工程, 2009, 25(4):97-102. ZHANG Yongliang, CHEN Xingchong, WU Haiyan. Research on seismic response reduction with viscous dampers in the railway steel truss girder bridge[J]. Wold Earthquake Engineering, 2009, 25(4):97-102. (in Chinese)
[7] 胡连军, 杨吉忠. 高墩铁路桥梁减震技术进展研究[J]. 铁道工程学报, 2016, 33(6):72-76,87. HU Lianjun, YANG Jizhong. Research on the progress of seismic control for high pier railway bridge[J]. Journal of Railway Engineering Society,2016,33(6):72-76,87. (in Chinese)
[8] 马振霄, 贾少敏. 基于简化数值模型的高墩桥梁减隔震性能研究[J]. 中外公路, 2019, 39(4):131-138. MA Zhenxiao, JIA Shaomin. Study on vibration isolation performance of high pier Bridge based on simplified numerical model[J]. Journal of China & Foreign Highway, 2019, 39(4):131-138. (in Chinese)
[9] JTG/TB02-01-2020公路桥梁抗震设计规范[S]. 北京:人民交通出版社, 2020. J TG/TB02-01-2008 Specifications for Seismic Design of Highway Bridges[S].Beijing:People’s Communications Press, 2010. (in Chinese)
[10] GB 50111-2006(2009年版)铁路工程抗震设计规范[S]. 北京:中国计划出版社, 2009. GB 50111-2006(2009 Edition) Code for Seismic Design of Railway Engineering[S].Beijing:China Planning Press, 2010. (in Chinese)
[11] 李嘉瑞, 景立平, 董瑞, 等. ABAQUS模拟土-结构相互作用时人工边界的选取[J]. 地震工程与工程振动, 2020,40(3):174-182. LI Jiarui, JING Liping, DONG Rui, et al. Artificial boundary selection when calculating soil-structure interaction with abaqus[J]. Earthquake Engineering and Engineering Dynamics,2020,40(3):174-182.(in Chinese)
[12] 张永亮, 宁贵霞, 陈兴冲, 等. 考虑桩-土相互作用效应的高速铁路桥梁桩基础抗震设计方法研究[J]. 冰川冻土, 2016, 38(4):1003-1011. ZHANG Yongliang, NING Guixia, CHEN Xingchong, et al. Study on seismic design method for high-speed railway bridge pile foundations considering soil-pile interaction effec[J]. Journal of Glaciology and Geocryology, 2016, 38(4):1003-1011. (in Chinese)
[13] AASHTO LRFD Bridge Design Specifications(8th edition)[S]. Washington,DC,2017.
[14] 庄军生. 桥梁减震、隔震支座和装置[M]. 北京:中国铁道出版社,2012. ZHUANG Junsheng. Bridge Damping, Isolation Bearings and Devices[M]. Beijing:China Railway Press, 2012. (in Chinese)
[15] 陈永祁, 马良喆. 结构保护系统的应用与发展[M]. 北京:中国铁道出版社,2015. CHEN Yongqi, Ma Liangzhe. Application and Development of Structure Protection System[M]. Beijing:China Railway Press, 2015. (in Chinese)
[16] 北京金土木软件公司. SAP2000中文版使用指南[M]. 2版. 北京:人民交通出版社出版, 2011. Beijing Golden civil Software Co., Ltd. SAP2000 Chinese Version Guide[M].2nd ed. Beijing:People’s Communications Press, 2011. (in Chinese)
[17] RYAN K L, POLANCO J. Problems with Rayleigh damping in base-isolated buildings[J]. Journal of Structure Engineering,2008,134(11):1780-1785.
[18] 杜永峰, 徐天妮, 包超, 等. 考虑非比例阻尼的基础隔震结构非线性反应谱研究[J]. 振动与冲击, 2016, 35(17):207-212. DU Yongfeng, XU Tianni, BAO Chao,et al. Nonlinear response spectra for base-isolated structures with non-proportional damping[J]. Journal of vibration and shock,2016,35(17):207-212. (in Chinese)
[19] 彭伟, 李建中. 粘滞阻尼器用于桥梁减震控制的几个问题及研究现状[J]. 公路交通科技, 2016, 33(6):76-82. PENG Wei, LI Jianzhong. Some problems and current study situation of applying fluid viscous dampers in bridge seismic control[J]. Journal of Highway and Transportation Research and Development, 2016, 33(6):76-82. (in Chinese)
[20] 刘彦辉, 谭平, 金建敏, 等. 地震作用下全浮漂大跨斜拉桥耗能减震控制研究[J]. 振动与冲击, 2015, 34(8):1-6. LIU Yanhui, TAN Ping, JIN Jianmin, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock, 2015, 34(8):1-6. (in Chinese)
[21] 梁智垚. 桥梁高墩位移延性能力计算方法研究[J]. 工程抗震与加固改造, 2005(5):57-62. LIANG Zhiyao. Study on calculational methods of displacement ductility capacity of tall pier[J]. Earthquake Resistant Engineering and Retrofitting, 2005(5):57-62. (in Chinese)

相似文献/References:

[1]王依群,王华明.非经典振型分解法求混凝土房屋及其上钢塔的地震响应[J].地震工程与工程振动,2006,26(03):094.
 Wang Yiqun,Wang Huaming.Non-classical mode superposition method for earthquake response of a reinforced concrete building with a steel tower atop it[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(03):094.

备注/Memo

备注/Memo:
收稿日期:2020-06-24;改回日期:2020-09-03。
基金项目:教育部创新团队项目(IRT13057);国家自然科学基金面上项目(51978185);广东省教育厅创新团队项目(2016KCXTD016);广州市高校"羊城学者"首席科学家(1201541630)
作者简介:马安财(1980-),男,博士研究生,主要从事桥梁结构减震控制研究.E-mail:maancai@xauat.edu.cn
通讯作者:谭平(1973-),男,研究员,博士,主要从事结构减震控制研究.E-mail:ptan@foxmail.com
更新日期/Last Update: 1900-01-01