[1]张健,李雨润,戎贤,等.液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究[J].地震工程与工程振动,2021,41(03):235-244.[doi:10.13197/j.eeev.2021.03.235.zhangj.023]
 ZHANG Jian,LI Yurun,RONG Xian,et al.Dynamic response of pile cap and distribution law of pile bending moment for batter pile group in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2021,41(03):235-244.[doi:10.13197/j.eeev.2021.03.235.zhangj.023]
点击复制

液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
41
期数:
2021年03
页码:
235-244
栏目:
论文
出版日期:
2021-06-30

文章信息/Info

Title:
Dynamic response of pile cap and distribution law of pile bending moment for batter pile group in liquefied soil
作者:
张健1 李雨润12 戎贤12 师庆晓3 贺书云4
1. 河北工业大学 土木与交通学院, 天津 300401;
2. 河北省土木工程技术研究中心, 天津 300401;
3. 天津大港油田集团工程建设有限责任公司, 天津 300280;
4. 中建路桥集团有限公司, 河北 石家庄 050000
Author(s):
ZHANG Jian1 LI Yurun12 RONG Xian12 SHI Qingxiao3 HE Shuyun4
1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;
2. Civil Engineering Technology Research Center of Hebei Province, Tianjin 300401, China;
3. Tianjin Dagang Oilfield Group Engineering Construction Co., Ltd., Tianjin 300280, China;
4. CSCEC Road and Bridge Group Co., Ltd., Shijiazhuang 050000, China
关键词:
液化土斜群桩离心机振动台动力响应桩身弯矩
Keywords:
liquefied soilbatter pile groupcentrifuge shaking tabledynamic responsepile bending moment
分类号:
TU435
DOI:
10.13197/j.eeev.2021.03.235.zhangj.023
摘要:
为研究动荷载作用下饱和砂土发生液化前后斜群桩的动力响应相关问题,利用土工离心机振动台进行了饱和砂土场地条件下的斜群桩物理模型试验。通过试验分别对土层响应、桩身弯矩以及桩顶承台加速度和位移等进行了详细分析,得到了如下结论:不同荷载作用下土层液化范围的改变导致了土层加速度峰值出现了不同程度的放大或缩小现象;砂土液化前后桩身动弯矩和残余弯矩对整个桩身的影响程度发生了显著变化,尤其在砂土大范围液化后残余弯矩相比动弯矩的影响明显减弱;当输入加速度峰值较小时,桩顶承台水平加速度峰值与振动台台面比较出现了明显的放大现象。而随着输入加速度峰值的增加,在振动后期承台水平加速度峰值出现了缩小的现象,同时在振动结束后承台产生了明显的动态残余位移。本研究取得的相关结论为液化土中斜群桩的相关研究以及工程设计提供参考。
Abstract:
In order to study the dynamic response of the batter pile group before and after the saturated sand liquefaction under the seismic and cyclic loads, the physical model experiment of the batter pile group under the saturated sand field was carried out using a geotechnical centrifuge shaking table. A detailed analysis of soil response, pile bending moment, acceleration and displacement of pile cap and other factors were carried out, and the following conclusions were obtained: The change of liquefaction range have led to different degrees of enlargement or reduction of the peak acceleration in soil layers at different depths.Before and after sand liquefaction, the influence of the dynamic bending moment and residual bending moment on the total bending moment has changed significantly, especially after the large-scale liquefaction of the sand, the influence of the residual bending moment is significantly weaker than the dynamic bending moment.When themotionintensity is small, the peak acceleration of the pile cap is obviously amplified.With the increase of the motion intensity, the peak acceleration of the pile cap in the later stage of motion has been reduced.At the same time, after the end of the vibration, the pile cap produced obvious dynamic residual displacement.Theconclusions obtained in this study provide references for the related research and engineering design of batter pile groups in liquefied soil.

参考文献/References:

[1] MONDAL G, RAI D C. Performance of harbour structures in Andaman Islands during 2004 Sumatra earthquake[J]. Engineering Structures, 2008, 30(1):174-182.
[2] WOTHERSPOON L, BRADSHAW A, GREEN R, et al. Performance of Bridges during the 2010 Darfield and 2011 Christchurch Earthquakes[J]. Seismological Research Letters, 2011, 82(6):950-964.
[3] MITCHELL D, HUFFMAN S, TREMBLAY R, et al. Damage to bridges due to the 27 February 2010 Chile earthquake[J]. Canadian Journal of Civil Engineering, 2013, 40(8):675-692.
[4] SAMATA S, OHUCHI H, MATSUDA T. A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J]. Cement and Concrete Composites, 1997, 19(3):223-239.
[5] WILSON D. Soil-pile Superstructure Interaction in Liquefiable Sand and Soft Clay[D]. California:University of California, Davis, 1998.
[6] 梁发云, 陈海兵, 黄茂松, 等. 结构-群桩基础地震响应离心振动台模型试验[J]. 建筑结构学报, 2016, 37(9):134-141. LIANG Fayu, CHEN Hanbing, HUANG Maosong, et al. Model test on seismic response of superstructure and pile group[J]. Journal of Building Structures, 2016, 37(9):134-141. (in Chinese)
[7] LI Z, ESCOFFIER S, KOTRONIS P. Centrifuge modeling of batter pile foundations under earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2016, 88:176-190.
[8] SUZUKI H, TOKIMATSU K, TABATA K. Factors affecting stress distribution of a 3×3 pile group in dry sand based on three-dimensional large shaking table tests[J]. Soils and Foundations, 2014, 54(4):699-712.
[9] YANG J, LU Z, LI P. Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction[J]. Engineering Structures, 2020, 220:
[10] 汪明武, TOBITA T, IAI S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10):2012-2017. WANG Mingwu, TOBITA T, IAI S. Dynamic centrifuge tests of seismic responses of pile foundations in inclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2012-2017.(in Chinese)
[11] HAIGH S K, GOPAL MADABHUSHI S P. Centrifuge modelling of pile-soil interaction in liquefiable slopes[J]. Geomechanics and Engineering, 2011, 3:1-16.
[12] TANG L, ZHANG X, LING X, et al. Response of a pile group behind quay wall to liquefaction-induced lateral spreading:a shake-table investigation[J]. Earthq Eng Eng Vib, 2014, 13(4):741-749.
[13] TANG L, LING X, ZHANG X, et al. Response of a RC pile behind quay wall to liquefaction-induced lateral spreading:a shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2015, 76:69-79.
[14] SU L, TANG L, LING X, et al. Pile response to liquefaction-induced lateral spreading:a shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 82:196-204.
[15] 李雨润, 潘鑫鑫, 陈张升, 等. 对称双斜桩侧向动力响应特性试验研究[J]. 地震工程与工程振动, 2017, 37(1):32-39. LI Yurun, PAN Xinxin, CHEN Zhangsheng, et al. Test research on lateral dynamic response characteristic for symmetrical double inclined pile[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(1):32-39. (in Chinese)
[16] 李雨润, 徐栋梁, 张雨雷, 等. 饱和砂土中两桩承台群桩横向动力响应规律研究[J]. 地震工程与工程振动, 2020, 40(3):43-53. LI Yurun, XU Dongliang, ZHANG Yulei, et al. Research on lateral dynamic response law of double pile-cap clump of piles in saturated sandy soil[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(3):43-53. (in Chinese)
[17] 李雨润, 闫志晓, 张健, 等. 饱和砂土中直群桩动力响应离心机振动台试验与简化数值模型研究[J]. 岩石力学与工程学报, 2020, 39(6):1252-1264. LI Yurun, YAN Zhixiao, ZHANG Jian, et al. Centrifugal shaking table test and numerical simulation of dynamic responses of straight pile group in saturated sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6):1252-1264. (in Chinese)
[18] WANG R, LIU X, ZHANG J M. Numerical analysis of the seismic inertial and kinematic effects on pile bending moment in liquefiable soils[J]. Acta Geotechnica, 2017.
[19] 许成顺, 豆鹏飞, 杜修力, 等. 液化场地-群桩基础-结构体系动力响应分析——大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12):2173-2181. XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic response analysis of liquefied site-pile group foundation-structure system-large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12):2173-2181. (in Chinese)
[20] 孔德森, 白翼飞, 陈永坡, 等. 不同承台形式斜直交替群桩-土-结构地震相互作用特性分析[J]. 防灾减灾工程学报, 2020, 40(4):509-519. KONG Decen, BAI Yifei, CHEN Yongpo, et al. Analysis on seismic interaction characteristics of pile-soil-structure of obliquely pile groups with different pile caps[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4):509-519. (in Chinese)
[21] 周恩全, 伊思航, 文艳, 等. 可液化倾斜场地中桩基动力响应振动台试验研究[J]. 地震工程学报, 2020, 42(3):732-741. ZHOU Enquan, YI Sihang, WEN Yan, et al. Shaking table test on the dynamic response of a pile foundation in an inclined liquefiable site[J]. China Earthquake Engineering Journal, 2020, 42(3):732-741. (in Chinese)
[22] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12):1887-1894. CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1887-1894. (in Chinese)
[23] ZENG X, SCHOFIELD A N. Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling[J]. Géotechnique, 1996, 46(1):83-102.
[24] BRENNAN A J, MADABHUSHI S P G. Design and performance of a new deep model container for dynamic centrifuge testing[C]//Proceedings of the International Conference on Physical Modelling in Geotechnics.Newfoundland:University of Cambridge, 2002:183-188.

相似文献/References:

[1]李雨润,张中乐,魏星,等.FBG传感系统在桩基侧向动力响应中的应用研究[J].地震工程与工程振动,2013,33(02):185.
 LI Yurun,ZHANG Zhongle,WEI Xing,et al.Research on lateral dynamic responses of pile foundations by using FBG sensing system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):185.
[2]包日东,闻邦椿.液化土中输流管道的竖向地震响应研究[J].地震工程与工程振动,2008,28(04):173.
 BAO Ridong,WEN Bangchun.Study on seismic response of buried pipeline in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):173.
[3]李雨润,邹泽,潘鑫鑫,等.对称双斜桩侧向响应振动台试验与数值模拟[J].地震工程与工程振动,2018,38(05):221.[doi:10.13197/j.eeev.2018.05.221.liyr.026]
 LI Yurun,ZOU Ze,PAN Xinxin,et al.Lateral response of symmetrically assembled double batter piles of shaking table test and numerical simulation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(03):221.[doi:10.13197/j.eeev.2018.05.221.liyr.026]
[4]李雨润,张健,戎贤.液化土中直斜桩基抗震研究进展与新问题[J].地震工程与工程振动,2018,38(06):171.[doi:10.13197/j.eeev.2018.06.171.liyr.020]
 LI Yurun,ZHANG Jian,RONG Xian.Recent advances and new problems in seismic behavior for vertical and batter pile foundation in liquefied soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(03):171.[doi:10.13197/j.eeev.2018.06.171.liyr.020]

备注/Memo

备注/Memo:
收稿日期:2020-10-10;改回日期:2020-12-16。
基金项目:国家自然科学基金项目(51778207);河北省自然科学基金项目(E2018202107);邢台市重点研发计划项目(2020ZC140)
作者简介:张健(1991-),男,博士研究生,主要从事土动力学与桩基抗震研究.E-mail:201521601031@stu.hebut.edu.cn
通讯作者:李雨润(1978-),男,教授,博士,主要从事土动力学与桩基抗震研究.E-mail:iemlyr7888@hebut.edu.cn
更新日期/Last Update: 1900-01-01