[1]朱龙基,温留汉·黑沙,刘彦辉.基于能量法的浮置基础减振系统解析模型[J].地震工程与工程振动,2022,42(02):104-112.[doi:10.13197/j.eeed.2022.0211]
 ZHU Longji,WENLIUHAN Heisha,LIU Yanhui.Analytical model of floating foundation vibration reduction system based on energy method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(02):104-112.[doi:10.13197/j.eeed.2022.0211]
点击复制

基于能量法的浮置基础减振系统解析模型
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年02期
页码:
104-112
栏目:
论文
出版日期:
2022-04-30

文章信息/Info

Title:
Analytical model of floating foundation vibration reduction system based on energy method
作者:
朱龙基123 温留汉·黑沙123 刘彦辉123
1. 广州大学 工程抗震研究中心, 广东 广州 510405;
2. 广州大学 广东省地震工程与应用技术重点实验室, 广东 广州 510405;
3. 广州大学 工程抗震减震与结构安全教育部重点实验室, 广东 广州 510405
Author(s):
ZHU Longji123 WENLIUHAN Heisha123 LIU Yanhui123
1. Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510405, China;
2. Key Laboratory of Earthquake Engineering and Applied Technology in Guangdong Province, Guangzhou University, Guangzhou 510405, China;
3. Key Laboratory of Earthquake Resistance, Earthquake Mitigation and Structural Safety, Ministry of Education, Guangzhou University, Guangzhou 510405, China
关键词:
浮置基础空气弹簧能量法模态分析精密仪器隔振
Keywords:
floating foundationair springenergy methodmodal analysisvibration isolation of precision instruments
分类号:
TB535+.1
DOI:
10.13197/j.eeed.2022.0211
摘要:
在设计浮置基础减振系统时,需要确定减振系统的力学参数、减振器个数及其布置形式等。虽然以有限元方法建立的实体模型比解析模型更准确,但在没有初始设计的情况下建立有限元模型所耗费的工作量过大,解析模型可以更快的获得较好的初始参数,为浮置基础减振系统的优化设计提供依据。文中基于能量法并结合Lagrange运动方程提出了由弹性构件支撑的浮置基础减振系统动力学解析模型,利用运动方程的特征分析方程推导了系统的实模态频率及复模态频率,并将所提出的模型和模态求解方法应用于量子芯片实验室的电子束曝光机浮置基础减振系统分析。对所提出的解析模型和SAP2000有限元模型进行了比较分析,结果显示文中提出的解析模型求解结果与有限元模型计算结果相对误差小于6%。解析模型的实模态计算浮置基础模态频率比复模态计算的结果更接近有限元模型的计算结果。
Abstract:
It is necessary to determine the mechanical parameters of the vibration reduction system and the number and layout of the isolators when designing the floating foundation vibration reduction system. Although the solid model established by the finite element method is more accurate than the analytical model,the establishment of the finite element model requires excessive workload without initial design. The analytical model can easily obtain initial parameters,which provides a basis for the optimal design of a floating foundation vibration reduction system. In this study,a dynamic analysis model of floating foundation vibration reduction system supported by elastic members is proposed based on the energy method and Lagrange equation of motion. The real modal frequency and complex modal frequency of the system are derived by using the characteristic analysis equation of the motion equation. The proposed analytical model is applied to the floating foundation vibration reduction system of the Electron Beam Lithography Machine in the Quantum Chip Laboratory. The proposed analytical model and SAP2000 finite element model are compared and analyzed. The results show that the relative error between the analytical model and the finite element model is less than 6%. The modal frequency of floating foundation calculated by the real modal analysis is closer to that calculated by the finite element method than that calculated by the complex modal analysis.

参考文献/References:

[1] VOIGTL?DER B,COENEN P,CHEREPANOV V,et al. Low vibration laboratory with a single-stage vibration isolation for microscopy applications[J]. Review of Scientific Instruments,2017,88(2):023703:1-7. Doi. org/10. 1063/1. 4975832
[2] ZHAO Y,CUI J,BIAN X,et al. Study on Performance of an air spring isolator for large-scale precision optical micro-vibration isolation[C]//Proceedings of the 3rd International Conference on Information Technologies and Electrical Engineering. 2020:173-178. Doi. org/10. 1145/3452940. 3452974
[3] PUSHIN D A,HUBER M G,ARIF M,et al. Neutron interferometry at the national institute of standards and technology[J]. Advances in High Energy Physics,2015(1):1-8. Doi. org/10. 1155/2015/687480
[4] ?H? M. 3-D Analytical treatment of base isolation for mechanical testing systems[J]. Gazi University Journal of Science Part A:Engineering and Innovation,2018,5(1):1-15.
[5] SONG Y J,OTTE A F,SHVARTS V,et al. Invited review article:A 10 mK scanning probe microscopy facility[J]. Review of Scientific Instruments,2010,81(12):121101. Doi:10. 1063/1. 3520482
[6] 徐建. 隔振设计规范理解与应用[M]. 北京:中国建筑工业出版社,2009:205. XU Jian. Understanding and Application of Vibration Isolation Design Code[M]. Beijing:China Construction Industry Press,2009:205.(in Chinese)
[7] 李仲兴,李美,郭继伟,等. 带附加气室空气弹簧性能试验系统的搭建与试验研究[J]. 机械工程学报,2012,48(4):98-102. LI Zhongxing,LI Mei,GUO Jiwei,et al. Novel test platform and performance test study on air spring with auxiliary chamber[J]. Journal of Mechanical Engineering,2012,48(4):98-102.(in Chinese)
[8] 陈俊杰,殷智宏,何江华,等. 带节流阻尼孔和附加气室的空气弹簧系统建模和动态特性研究[J]. 机械工程学报,2017,53(8):166-174. CHEN Junjie,YIN Zhihong,HE Jianghua,et al. Study on modelling and dynamic characteristic of air spring with throttling damping orifice and auxiliary chamber[J]. Journal of Mechanical Engineering,2017,53(8):166-174.(in Chinese)
[9] SHAN Y,WU W,CHEN X. Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J]. Journal of Vibration and Acoustics,2015,137(4):1-8. Doi. org/10. 1115/1. 4029898
[10] EVANS J B. Pneumatically isolated inertia base with active damping for a Transmission Electron Microscope(TEM)[J]. Journal of Low Frequency Noise,Vibration and Active Control,2009,28(3):169-183.
[11] POEL G W,DIJK J,JONKER J B,et al. Design of a smart mount for vibration isolation in high-precision machinery[C]//25th Benelux Meeting on Systems and Control 2006. TechnischeUniversiteit Eindhoven,2006:77-77.
[12] 朱宇龙,王淑芬,李玉光. 螺栓结合部切向刚度计算模型建立及分析[J]. 机械设计与制造,2019(4):214-219. Doi:10. 19356/j. cnki. 1001-3997. 2019. 04. 054. ZHU Yulong,WANGShufen,LIYuguang. Establishment and analysis of tangential stiffness calculation model for bolted joint[J]. Machinery Design & Manufacture,2019,(4):214-219. Doi:10. 19356/j. cnki. 1001-3997. 2019. 04. 054.(in Chinese)
[13] YAP F F,VAHDATI N,HARMOKO H. Design and analysis of vibration isolation systems for hard disk drives[J]. Journal of Magnetism and Magnetic Materials,2006,303(2):52-56. Doi. org/10. 1016/j. jmmm. 2006. 01. 114.
[14] MOORE S. Analytical modelling of single and twostage vibration isolation systems[J]. Proceedings of Acoustics,2011(1):116.
[15] 肖庆雨,周加喜,徐道临,等. 一种六自由度准零刚度隔振平台[J]. 振动与冲击,2019,38(1):258-264. DOI:10. 13465/j. cnki. jvs. 2019. 01. 037. XIAO Qingyu,ZHOU Jiaxi,XU Daolin,et al. A 6-DOF quasi-zero stiffness vibration isolation platform[J]. Journal of Vibration and Shock, 2019,38(1):258-264. DOI:10. 13465/j. cnki. jvs. 2019. 01. 037.(in Chinese)
[16] HIMELBAU J H,RUBIN S. Vibration of a resiliently supported rigid body[J]. Shock and Vibration Handbook,2001,1:72-83.
[17] ANGELES J,ANGELES J. Fundamentals of Robotic Mechanical Systems[M]. New York:Springer-Verlag,2002.
[18] IWANW D,The earthquake design and analysis of equipment isolation systems[J]. Earthquake Engineering & Structural Dynamics,1978,6(6):523-534,1978. Doi. org/10. 1002/eqe. 4290060602.
[19] IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration,2008,314(3):371-452,2008. Doi. org/10. 1016/j. jsv. 2008. 01. 014.
[20] 刘晶波,杜修力. 结构动力学[M]. 北京:机械工业出版社,2005:303-306. LIU Jingbo,DU Xiuli. Structural Dynamics[M]. Beijing:Machine Press,2005:303-306.(in Chinese)
[21] KAZUYUKI S,TAKAYUKI T. An air spring model with non-linear damping for vertical motion[J]. Quarterly Report of RTRI,2008,49(4):209-214.

相似文献/References:

[1]于航,姚国凤.空气弹簧随温度变化静刚度特性分析[J].地震工程与工程振动,2019,39(06):148.[doi:10.13197/j.eeev.2019.06.148.yuh.021]
 YU Hang,YAO Guofeng.Analysis of static stiffness characteristics of air springs with temperature change[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):148.[doi:10.13197/j.eeev.2019.06.148.yuh.021]

备注/Memo

备注/Memo:
收稿日期:2021-9-29;改回日期:2021-10-25。
基金项目:国家自然科学基金项目(51778163)
作者简介:朱龙基(1989-),男,博士研究生,主要从事精密设备微振动隔振研究.E-mail:1111716013@e.gzhu.edu.cn
通讯作者:温留汉·黑沙(1963-),男,研究员,博士,主要从事精密设备微振动隔振研究.E-mail:wlh-gd@gzhu.edu.cn
更新日期/Last Update: 1900-01-01