[1]聂利英,冯江江,林浩然,等.基于反应谱衰减关系和理想化反应谱模型的我国规范谱长周期段研究[J].地震工程与工程振动,2022,42(02):151-162.[doi:10.13197/j.eeed.2022.0215]
 NIE Liying,FENG Jiangjiang,LIN Haoran,et al.Research on long-period segments of Chinese code response spectrum based on the ground motion attenuation relationship of response spectrum and the idealized response spectrum models[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(02):151-162.[doi:10.13197/j.eeed.2022.0215]
点击复制

基于反应谱衰减关系和理想化反应谱模型的我国规范谱长周期段研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年02期
页码:
151-162
栏目:
论文
出版日期:
2022-04-30

文章信息/Info

Title:
Research on long-period segments of Chinese code response spectrum based on the ground motion attenuation relationship of response spectrum and the idealized response spectrum models
作者:
聂利英 冯江江 林浩然 王康 汪基伟
河海大学 土木与交通学院, 江苏 南京 210098
Author(s):
NIE Liying FENG Jiangjiang LIN Haoran WANG Kang WANG Jiwei
College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
关键词:
理想化反应谱模型第二特征周期TD地震动反应谱衰减关系结构所需周期范围地震动峰值加速度分区值
Keywords:
idealized response spectrum modelthe second corner period TDground motion attenuation relationship of response spectrumnecessary range of structural natural periodpartition value of seismic peak ground acceleration
分类号:
P315.9
DOI:
10.13197/j.eeed.2022.0215
摘要:
相对于我国各行业抗震规范反应谱下降段呈现的多样性,欧美规范谱基于理想化反应谱模型,其长周期下降段的规定形式统一,且由第二特征周期TD确定。基于理想化反应谱模型,TD的确定与位移谱形态、“结构所需周期范围”等概念相关。基于我国区划图研究中大量采用NGA数据库的地震动记录及以地震动峰值加速度分区值表达地震强度的现状,以理想化反应谱模型为我国规范谱模型,以NGA数据库BSSA 14公式为工具,对TD建议值等进行研究。首先通过理想化反应谱模型与TD计算公式的阐述,明确欧美规范谱长周期下降段的衰减指数1、2是由理想化反应谱模型定义决定的确定性参数,此时长周期下降段函数由TD唯一确定;其次,在NGA数据库提供的地震动衰减关系中,比选出与我国规范考虑因素吻合性最好的BSSA 14公式,并以其作为基于地震动记录统计的反应谱公式,分析位移谱曲线形态类型及由于位移谱谱值截取周期Tcut不同而引起的位移谱曲线形态类型随震级、距离、场地类别的分布变化;最后,基于BSSA 14,考虑“结构所需周期范围”,给出以我国规范地震动峰值加速度分区值为参照的TD建议值。此研究可为我国抗震规范谱长周期下降段的研究提供参照。
Abstract:
The long-period descending segments of response spectrum in different industry codes in China are quite different. In response spectrum of European and American codes,which are all based on the idealized response spectrum model,they have the same form,and are determined by the value of TD,the second corner period. In idealized response spectrum model,calculating the value of TD is related to the factors,such as the curve shape of displacement response spectrum,’the necessary range of structural natural period’and the others. Considering the present situations that a large number of ground motion records from NGA database is adopted in the research of "Seismic Ground Motion Parameters Zonation Map of China"in which earthquake intensity are scaled by the partition value of the seismic peak ground acceleration,the values of TD are investigated by taking the idealized response spectrum model as code response spectrum model and using the formula BSSA 14 from NGA database. In this paper, firstly,by relating the conceptions of the idealized response spectrum model and the formulas of TD,it is illustrated that the attenuation power index 1 and 2 of the long-period descending segments of response spectrum of the European and American code are two fixed values and are determined directly by the definition of the idealized response spectrum model itself,and the long-period descending segments are determined only by the parameter,TD. Then, from the ground motion attenuation relationships provided by NGA database,BSSA14 formula which has the most agreement with the consideration conditions in China’s code is selected,and using BSSA14 as the statistical response spectrum formula based on ground motion records,curve shape types of displacement response spectrum,and its variation of distribution varying with magnitude,distance and site classification,caused by truncation period Tcut, are analyzed. Finally,based on BSSA 14,considering’the necessary range of structural natural period’,the TD value varying with the partition value of seismic peak ground acceleration in China’s code is established. This study can provide a reference for the research of long period decline segments of the code response spectrum in China.

参考文献/References:

[1] GB 18306-2015中国地震动参数区划图[S]. 北京:中国标准出版社,2015. GB 18306-2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing:China Standards Press,2015.(in Chinese)
[2] JTG/T 2231-01-2020公路桥梁抗震设计规范[S]. 北京:人民交通出版社,2020. JTG/T 2231-01-2020 Specifications for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press,2020.(in Chinese)
[3] NB35047-2015水电工程水工建筑物抗震设计规范[S]. 北京:中国电力出版社,2015. NB35047-2015 Code for Seismic Design of Hydraulic Structures of Hydropower Project[S]. Beijing:China Electric Power Press,2015.(in Chinese)
[4] GB 50909-2014城市轨道交通结构抗震设计规范[S]. 北京:中国计划出版社,2014. GB 50909-2014. Code for Seismic Design of Urban Rail Transit Structures[S]. Beijing:China Planning Press,2014.(in Chinese)
[5] JTG B02-2013公路工程抗震设计规范[S]. 北京:人民交通出版社,2014. JTG B02-2013 Specifications of Seismic Design for Highway Engineering[S]. Beijing:China Communications Press,2014.(in Chinese)
[6] GB 50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016. GB 50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press,2016.(in Chinese)
[7] GB 50111-2006铁路工程抗震设计规范[S]. 北京:中国计划出版社,2009. GB 50111-2006 Code for Seismic Design of Railway Engineering[S]. Beijing:China Planning Press,2009.(in Chinese)
[8] 韩小雷,尤涛,季静. 加速度反应谱长周期段下降规律研究[J]. 振动与冲击,2018,37(9):86-91. HAN Xiaolei,YOU Tao,JI Jing. Descending law in long-period range for an acceleration response spectrum[J]. Journal of Vibration and Shock, 2018,37(9):86-91.(in Chinese)
[9] 高孟潭. GB 18306-2015《中国地震动参数区划图》宣贯教材[M]. 北京:中国质检出版社,中国标准出版社,2015:198-205. GAO Mengtan. GB 18306-2015 Publicity and Implementation Textbook of Seismic Ground Motion Parameter Zonation Map of China[M]. Beijing:China Quality Inspection Publishing House,China Standards Press,2015:198-205.(in Chinese)
[10] 罗诚,谢俊举,温增平. 熊本MW 7. 0地震近场地表与井下地震动对比研究[J]. 地震学报,2018,40(1):108-120. LUO Cheng,XIE Junju,WEN Zengping. Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica,2018,40(1):108-120.(in Chinese)
[11] ABRAHAMSON N A,SILVA W J,KAMAI R. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthquake Spectra, 2014,30(3):1025-1055.
[12] BOORE D M,STEWART J P,SEYHAN E,et al. NGA-West2 equations for predicting PGA,PGV,and 5% damped PSA for shallow crustal earthquakes[J]. Earthquake Spectra,2014,30(3):1057-1085.
[13] CAMPBELL K W,BOZORGNIA Y. NGA-west2 ground motion model for the average horizontal components of PGA,PGV,and 5% damped linear acceleration response spectra[J]. Earthquake Spectra,2014,30(3):1087-1115.
[14] CHIOU B S J,YOUNGS R R. Update of the chiou and youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra,2014,30(3):1117-1153.
[15] IDRISS I M. An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthquake Spectra,2014,30(3):1155-1177.
[16] PALERMO M,SILVESTRI S,GASPARINI G,et al. A statistical study on the peak ground parameters and amplification factors for an updated design displacement spectrum and a criterion for the selection of recorded ground motions[J]. Engineering Structures,2014,76:163-176.
[17] LUMANTARNA E,WILSON J L,LAM N T K. Bi-linear displacement response spectrum model for engineering applications in low and moderate seismicity regions[J]. Soil Dynamics and Earthquake Engineering,2012,43:85-96.
[18] FACCIOLI E,VILLANI M,VANINI M,et al. Mapping Seismic Hazard for the Needs of Displacement-Based Design:The Case of Italy[M]. Dordrecht:Springer Netherlands,2010.
[19] WILSON J L,LAM N T. Earthquake Design of buildings in Australia using velocity and displacement principles[J]. Australian Journal of Structural Engineering,2006,2(6):103-118.
[20] FACCIOLI E,PAOLUCCI R,REY J. Displacement spectra for long periods[J]. Earthquake Spectra,2004,20(2):347-376.
[21] Federal Emergency Management Agency. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450)[S]. Federal Emergency Management Agency(FEMA)Washington DC,2003.
[22] Federal Emergency Management Agency. Multi-hazard Loss Estimation Methodology,Earthquake model[S]. Federal Emergency Management Agency(FEMA),Washington,D C,2013.
[23] 邱立珊. 基于汶川地震记录的远场长周期地震动设计反应谱研究[D]. 重庆:重庆大学,2016. QIU Lishan. Research on Design Spectrum of Far-Sourse Long-Period Ground Motion Based on SEISMIC RECORds from 2008 Wenchuan Earthquake[D]. Chongqing:Chongqing University,2016.(in Chinese)
[24] 周靖,方小丹,毛威. 长周期抗震设计反应谱衰减指数与阻尼修正系数研究[J]. 建筑结构学报,2017,38(1):62-75. ZHOU Jing,FANG Xiaodan,MAO Wei. Attenuation power index and damping reduction factor of seismic design spectrum for long-period ground motions[J]. Journal of Building Structures,2017,38(1):62-75.(in Chinese)
[25] 耿淑伟,陶夏新,王国新. 对设计反应谱长周期段取值规定的探讨[J]. 世界地震工程,2008,24(2):111-116. GENG Shuwei,TAO Xiaxin,WANG Guoxin. Study on the provisions for the values of design response spectra in long period section[J]. World Earthquake Engineering,2008,24(2):111-116.(in Chinese)
[26] 方小丹,魏琏,周靖. 长周期结构地震反应的特点与反应谱[J]. 建筑结构学报,2014,35(3):16-23. FANG Xiaodan,WEI Lian,ZHOU Jing. Characteristics of earthquake response for long-period structures and response spectrum[J]. Journal of Building Structures,2014,35(3):16-23.(in Chinese)
[27] 周靖,方小丹,江毅. 远场长周期地震动反应谱拐点特征周期研究[J]. 建筑结构学报,2015,36(6):1-12. ZHOU Jing,FANG Xiaodan,JIANG Yi. Characteristic periods of response spectrum for far-field long-period seismic ground motions[J]. Journal of Building Structures,2015,36(6):1-12.(in Chinese)
[28] ASCE/SEI 7-16. Minimum Design Loads and Associated Criteria for Buildings and Other Structures[S]. Description:Reston,Virginia:American Society of Civil Engineers,2017.
[29] European Committee for Standardization. Eurocode 8:Design of Structures for Earthquake Resistance Part 1:General rules,Seismic actions and Rules for Buildings[S]. Brussels,Belgium:CEN Technical Committee for Standardization,2004.
[30] FACCIOLIA E,VILLANIB M. Seismic hazard mapping for italy in terms of broad band displacement response spectra[J]. Earthquake Spectra, 2009,25(3):515-539.
[31] CHOPRA A K,CHINTANAPAKDEE C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J]. Earthquake Engineering and Structural Dynamics,2001,30(12):1769-1789.
[32] BOMMER J J,ELNASHAI A S,WEIR A G. Compatible Acceleration and Displacement Spectra for Seismic Design Codes[C]//Proceedings of the Twelfth World Conference on Earthquake Engineering,Auckland,2000:1-8.
[33] 赵国臣. 地震动位移反应谱分析及抗震设计谱研究[D]. 哈尔滨:哈尔滨工业大学,2018. ZHAO Guochen. Study on Displacement Response Spectra of Ground Motions and Development of Seismic Design Spectra[D]. Harbin:Harbin Institute of Technology,2018.(in Chinese)
[34] 吴晓阳,陈龙伟,袁晓铭. 基于强震记录的长周期位移反应谱特征分析[J]. 建筑结构学报,2021,42(5):195-205. WU Xiaoyang,CHEN Longwei,YUAN Xiaoming. Characteristics of long-period displacement spectra based on ground-motion records recorded in recent large earthquakes[J]. Journal of Building Structures,2021,42(5):195-205.(in Chinese)
[35] 曹加良,施卫星,刘文光,等. 长周期结构相对位移反应谱研究[J]. 振动与冲击,2011,30(7):63-70. CAO Jialiang,SHI Weixing,LIU Wenguang,et al. Relative displacement response spectrum of a long-period structure[J]. Journal of Vibration and Shock,2011,30(7):63-70.(in Chinese)
[36] 聂利英,帅娇娇,林浩然,等. 基于BCV模型与我国规范对中美场地类别的研究[J]. 防灾减灾工程学报,2021,41(2):294-303. NIE Liying,SHUAI Jiaojiao,LIN Haoran,et al. Study on the site classifications between Chinese and American codes based on the BCV model and the definition of Chinese codes[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(2):294-303.
[37] BOORE D M. Estimating Vs(30)(or NEHRP Site Classes)from shallow velocity models(depths<30 m)[J]. Bulletin of the Seismological Society of America,2004,94(2):591-597.
[38] BOORE D M,THOMPSON E M,CADET H. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 Meters[J]. Bulletin of the Seismological Society of America,2011,101(6):3046-3059.
[39] XIE J,ZIMMARO P,LI X,et al. VS30 Empirical prediction relationships based on a new soilprofile database for the Beijing Plain Area,China[J]. Bulletin of the Seismological Society of America,2016,106(6):2843-2854.
[40] 周锡元,王国权,杨润林. 1999年9月21日台湾集集地震中不同场地上峰值加速度的衰减规律[C]//大型复杂结构体系的关键科学问题及设计理念研究论文集,哈尔滨:哈尔滨工业大学出版社,2002:406-413. ZHOU Xiyuan,WANG Guoquan,YANG Runlin,et al. The peak acceleration attenuation law at different kinds of sites in 1999 taiwan chi-chi earthquake[C]//Editorial Board. Research Papers on Key Scientific Issues and Design Theories of Large and Complex Structures(2001). Harbin:Harbin Institute of Technology Press,2002:406-413.(in Chinese)
[41] 吕红山,赵凤新. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,2007(1):67-76. LV Hongshan,ZHAO Fengxin. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,2007(1):67-76.(in Chinese)
[42] 郭锋,吴东明,许国富,等. 中外抗震设计规范场地分类对应关系[J]. 土木工程与管理学报,2011,28(2):63-66. GUO Feng,WU Dongming,XU Guofu,et al. Site classification corresponding relationship between Chinese and the overseas seismic design codes[J]. Journal of Civil Engineering and Management,2011,28(2):63-66.(in Chinese)
[43] LAM N,GAD E,WILSON J. Displacement demand of rocking systems in conditions of moderate ground shaking[C]//The 2013 world Congress Advances in Structural Engineering and Mechanics(ASEM2013),Korea,2013:3639-3652.
[44] LAM N,WILSON J,CHANDLER A,et al. Response spectral relationships for rock sites derived from the component attenuation model[J]. Earthquake Engineering & Structural Dynamics,2000,29(10):1457-1489.

备注/Memo

备注/Memo:
收稿日期:2021-2-19;改回日期:2021-6-16。
基金项目:国家重点研发计划项目(2016YFC0401807,2016YFC0402003)
作者简介:聂利英(1972-),女,副教授,博士,主要从事桥梁抗震和渡槽减隔震研究.E-mail:nly1972@hhu.edu.cn
通讯作者:汪基伟(1962-),男,教授,博士,主要从事钢筋混凝土结构限裂配筋以及结构静动力分析研究.E-mail:wjw2903918@126.com
更新日期/Last Update: 1900-01-01