[1]魏成前,于彦彦,丁海平.SV波斜入射下成层盆地地震动时-频域放大特征研究[J].地震工程与工程振动,2022,42(02):225-234.[doi:10.13197/j.eeed.2022.0222]
 WEI Chengqian,YU Yanyan,DING Haiping.Study on amplification characteristics of ground motion in layered basin in time and frequency domain under oblique incidence of SV wave[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(02):225-234.[doi:10.13197/j.eeed.2022.0222]
点击复制

SV波斜入射下成层盆地地震动时-频域放大特征研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年02期
页码:
225-234
栏目:
论文
出版日期:
2022-04-30

文章信息/Info

Title:
Study on amplification characteristics of ground motion in layered basin in time and frequency domain under oblique incidence of SV wave
作者:
魏成前 于彦彦 丁海平
苏州科技大学 江苏省结构工程重点实验室, 江苏 苏州 215011
Author(s):
WEI Chengqian YU Yanyan DING Haiping
Key Laboratory of Structure Engineering of Jiangsu Province, Suzhou University of Science and Technology, Suzhou 215011, China
关键词:
成层盆地有限元法透射边界入射角度放大效应
Keywords:
layered basinfinite element methodtransmitting boundaryincidence angleamplification effect
分类号:
P315.9
DOI:
10.13197/j.eeed.2022.0222
摘要:
基于二维成层盆地模型,以盆地不同场点对应的一维等效土层模型的结果为参考,采用有限元法与人工透射边界相结合的方法,研究了SV波入射时入射角θ对盆地地表地震动放大特征的影响。结果表明入射角度和盆地分层构造对地表地震动放大特征均有显著影响:(1)盆地地表地震动峰值受θ影响显著,不同分量、不同区域(盆地边缘和内部区域)的位移峰值随入射角的变化规律也不同;(2)入射角度对盆地边缘效应出现的位置影响明显。随θ增大,水平分量出现位置从盆地斜边范围之外转移至斜边范围内,垂直分量边缘效应的位置不受入射角影响;(3)相比一维等效土层模型,水平分量地震动放大系数在盆地左侧边缘区域最大(1.45左右),且随θ增大而增大,右侧与之相反;垂直分量放大系数随θ的增大而减小,但左右两侧放大系数基本相同;(4)从盆地边缘向盆地内部,观测点时程的主频从高向低变化。在不同入射角下其谱比曲线特征相似,但谱比值均随入射角度的增大而增大。不同θ角下成层盆地边缘和内部区域主要放大频段差别显著;(5)相比均匀盆地,成层盆地地震动受入射角影响更加强烈,地震动峰值分布特征也显著不同。
Abstract:
Based on the 2D layered basin model,and using the results of the one-dimensional equivalent soil model corresponding to different field points in the basin as a reference,the influence of incidence angle θ of SV waves on the basin ground motion are studied by using the finite element method and artificial transmitting boundary. The results show that the angle of incidence and the stratified structure of the basin have significant impacts on the characteristics of ground motion amplification:(1)The peak of the ground motion of the basin is significantly affected by θ,and the peak displacement of different components and regions(basin edges and internal regions)demonstrate different changing features with θ.(2)The incident angle has a significant influence on the location where the basin edge effect appears. As θ increases,the position of the horizontal component shifts from hypotenuse outside range to the within range of the basin,while the position of the edge effect of the vertical component is not affected by the incident angle.(3)Compared with the one-dimensional equivalent soil layer model,the amplification factor of horizontal component is the largest in the left edge of the basin(about 1.45),and it increases with the increase of θ, while the right side is the opposite;the vertical component amplification factor decreases with the increase of θ, but the magnification coefficients on the left and right sides are basically the same.(4)From the basin edge to the basin internal region,the dominant frequency of the observation point changes from high to low. The characteristics of the spectral ratio curves are similar for different incident angles,but the spectral ratio values all increase with growing incident angle. There are significant differences in the main amplification frequency bands at the edge and internal areas of stratified basins under different θ angles.(5)Compared with homogeneous basins,stratified basins are more strongly affected by the angle of incidence,and the distribution characteristics of peak ground motions are also significantly different.

参考文献/References:

[1] ANDERSON J G,BODIN P,BRUNE J N,et al. Strong ground motion from the michoacan,Mexico,Earthquake[J]. Science,1986,233(4768):1043-1049.
[2] ASIMAKI D,MOHAMMADI K,AYOUBI P,et al. Investigating the spatial variability of ground motions during the 2017 Mw 7. 1 Puebla-Mexico City earthquake via idealized simulations of basin effects[J]. Soil Dynamics and Earthquake Engineering,2020,132:106073.
[3] KAWASE H. The cause of the damage belt in Kobe:"The Basin-Edge Effect,"constructive interference of the direct S-wave with the basin-induced diffracted/rayleigh waves[J]. Seismological Research Letters,1996,67(5):25-34.
[4] BOORE D M. Comparisons of ground motions from the 1999 Chi-Chi earthquake with empirical predictions largely based on data from California[J]. Bulletin of the Seismological Society of America,2001,91(5):1212-1217.
[5] 王海云. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报,2011,54(1):137-150. WANG Haiyun. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese Journal of Geophysics. Geophys,2011,54(1):137-150.(in Chinese)
[6] 刘启方. 2014年鲁甸地震龙头山镇盆地共振效应研究[J]. 地震工程与工程振动,2021,41(2):43-52. LIU Qifang. Study on the basin resonance effect in Longtoushan Town during the 2014 Ludian earthquake[J]. Earthquake Engineering and Engineering Dynamics,2021,41(2):43-52.(in Chinese)
[7] 张建经,朱传彬,张明,等. 地震波入射角对盆地地震反应影响的数值分析[J]. 岩石力学与工程学报,2014,33(增刊1):2720-2727. ZHANG Jianjing,ZHU Chuanbin,ZHANG Ming,et al. Numerical analysis for effect of incident angle of seismic wave on seismic response of basin[J]. Chinese Journal of Rock Mechanic and Engineering,2014,33(S1):2720-2727.(in Chinese)
[8] KHANBABAZADEH H,IYISAN R. A numerical study on the 2D behavior of the single and layered clayey basins[J]. Bulletin of Earthquake Engineering,2014,12(4):1515-1536.
[9] ZHU C,THAMBIRATNAM D. Interaction of geometry and mechanical property of trapezoidal sedimentary basins with incident SH waves[J]. Bulletinof Earthquake Engineering,2016,14(11):1-26.
[10] 陈学良,高孟潭,李铁飞. Rayleigh面波作用下盆地场地响应特性研究[J]. 土木建筑与环境工程,2011,33(增刊2):29-33. CHEN Xueliang,GAO Mengtan,LI Tiefei. Study on response characteristics of basin site wave[J]. Journal of Civil and Environmental Engineering,2011,33(S2):29-33.(in Chinese)
[11] 刘中宪,苗岳云,陈頔. 点震源作用下三维沉积盆地地震动谱元模拟[J]. 世界地震工程,2020,36(2):200-208. LIU Zhongxian,MIAO Yueyun,CHEN Di. Seismic spectral element simulation of three-dimensional sedimentary basin under the action of point seismic source[J]. World Earthquake Engineering,2020,36(2):200-208
[12] 梁佳利,梁建文,韩冰. 基于黏弹性边界的二维沉积盆地非线性地震响应分析[J]. 地震工程与工程振动,2020,40(4):108-117. LIANG Jiali,LIANG Jianwen,HAN Bing. Nonlinear earthquake response analysis of 2D sedimentary basin using viscous-spring boundary[J]. Earthquake Engineering and Engineering Dynamics,2020,40(4):108-117.(in Chinese)
[13] 傅淑芳,刘宝诚. 地震学教程[M]. 北京:地震出版社. 1991. FU Shufang,LIU Baocheng. Tutorial of Seismology[M]. Beijing:Seismological Press,1991.(in Chinese)
[14] 廖振鹏. 工程波动理论导论[M]. 北京:科学出版社,2002. LIAO Zhenpeng. Introduction to Wave Motion Theories in Engineering[M]. Beijing:Science Press,2002.(in Chinese)
[15] 刘斌. 地震学原理与应用[M]. 合肥:中国科技大学出版社. 2009. LIU Bin. Principles and Applications of Seismology[M]. Hefei:University of Science and Technology of China Press,2009.(in Chinese)
[16] GB 50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010 GB 50011-2010 Code for Seismic Design of Buldings[S]. Beijng:Building Industry Press of China,2010.(in Chinese)

相似文献/References:

[1]韩建平,董小军,周伟.基于振动台试验的RC框架模型修正及模拟损伤识别[J].地震工程与工程振动,2010,30(05):087.
 HAN Jianping,DONG Xiaojun,ZHOU Wei.Model updating for RC frame based on shaking table test and identification of simulated damage[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(02):087.
[2]王栋,谢礼立.断层倾角对上/下盘效应的影响[J].地震工程与工程振动,2007,27(05):001.
 WANG Dong,XIE Lili.The influence of the fault dip angle on the hanging wall/footwall effect[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(02):001.
[3]瞿伟廉,鲁丽君,李明.工程结构三维疲劳裂纹最大应力强度因子计算[J].地震工程与工程振动,2007,27(06):058.
 QU Weilian,LU Lijun,LI Ming.Calculation of the maximum stress intensity factor of 3-D fatigue crack in engineering structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(02):058.
[4]陆浩亮,李思明,金国芳,等.高层建筑转换梁上短肢剪力墙抗震试验和分析[J].地震工程与工程振动,2005,25(02):077.
 Lu Haoliang,Li Siming,Jin Guofang,et al.Tests and finite element analysis of earthquake resistant capability of shallow-section shear walls on transfer floor of a tall building[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2005,25(02):077.
[5]王威,任青文.活动断裂对深埋隧洞影响的研究概述[J].地震工程与工程振动,2006,26(01):175.
 Wang Wei,Ren Qingwen.General introduction to the effect of active fault on deeply buried tunnel[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):175.
[6]胡少卿,孙柏涛.核电站用三相异步电机的抗震力学性能计算分析[J].地震工程与工程振动,2006,26(06):133.
 Hu Shaoqing,Sun Baitao.Seismic analysis for three phase asynchronous motor used in nuclear power generating station[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):133.
[7]刘英利,王绍杰,苏幼坡,等.底部两层框架基础隔震建筑非线性动力分析[J].地震工程与工程振动,2006,26(06):190.
 Liu Yingli,Wang Shaojie,Su Youpo,et al.Nonlinear dynamic analysis of base isolated masonry structure with two-story frame structure on bottom[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):190.
[8]杜修力,封光,赵密.高承台群桩基础桥墩的动水附加质量模型验证[J].地震工程与工程振动,2014,34(05):081.[doi:10.13197/j.eeev.2014.05.81.duxl.011]
 DU Xiuli,FENG Guang,ZHAO Mi.Study on hydrodynamic added mass model for bridge pier on high cap pile group foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(02):081.[doi:10.13197/j.eeev.2014.05.81.duxl.011]
[9]赵密,梁玲玉,杜修力.无限域波传播分析的高精度连分式人工边界条件[J].地震工程与工程振动,2015,35(04):021.[doi:10.13197/j.eeev.2015.04.21.zhaom.003]
 ZHAO Mi,LIANG Lingyu,DU Xiuli.Continued-fraction-based high-order radiation boundary condition for simulation of wave propagation in infinite domain[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,35(02):021.[doi:10.13197/j.eeev.2015.04.21.zhaom.003]
[10]王铭明,陈健云,陈志强,等.局部土体地基的圆锥形黏弹性边界研究[J].地震工程与工程振动,2018,38(03):065.[doi:10.13197/j.eeev.2018.03.65.wangmm.008]
 WANG Mingming,CHEN Jianyun,CHEN Zhiqiang,et al.Research for cone type spring-dashpot boundary condition of local soil foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(02):065.[doi:10.13197/j.eeev.2018.03.65.wangmm.008]

备注/Memo

备注/Memo:
收稿日期:2021-3-3;改回日期:2021-6-16。
基金项目:国家自然科学基金青年基金项目(51808371);江苏省高等学校自然科学研究面上项目(18KJB560017);江苏省结构工程重点实验室开放研究课题(ZD1703)
作者简介:魏成前(1994-),男,硕士研究生,主要从事场地地震效应研究.E-mail:2918436774@qq.com
通讯作者:于彦彦(1986-),男,讲师,博士,主要从事场地地震效应研究.E-mail:yyy_usts@126.com
更新日期/Last Update: 1900-01-01