[1]李方圆,董林,夏坤,等.细粒含量对砂土液化势影响探讨[J].地震工程与工程振动,2022,42(02):244-251.[doi:10.13197/j.eeed.2022.0224]
 LI Fangyuan,DONG Lin,XIA Kun,et al.Discussion on the effects of fines content on liquefaction potential of sandy soils[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(02):244-251.[doi:10.13197/j.eeed.2022.0224]
点击复制

细粒含量对砂土液化势影响探讨
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年02期
页码:
244-251
栏目:
论文
出版日期:
2022-04-30

文章信息/Info

Title:
Discussion on the effects of fines content on liquefaction potential of sandy soils
作者:
李方圆 董林 夏坤 李燕 王晓磊
河北工程大学 土木工程学院, 河北 邯郸 056038
Author(s):
LI Fangyuan DONG Lin XIA Kun LI Yan WANG Xiaolei
College of Civil Engineering, Hebei University of Engineering, Handan 056038, China
关键词:
细粒含量液化孔隙比骨架孔隙比相对密度
Keywords:
fines contentliquefactionvoid ratioskeleton void ratiorelative density
分类号:
P315.9TU43
DOI:
10.13197/j.eeed.2022.0224
摘要:
细粒含量对砂土液化势的影响研究一直充斥着矛盾与争议,大量室内试验成果对现场粉砂、粉土液化判别方法的改进没有实质意义。文中分析了经典文献,从砂土与粉粒混合物最大、最小孔隙比试验数据入手,发现大部分砂土随细粒含量增大,最大、最小孔隙比都呈先减小、后增大的抛物线型,保持等孔隙比,试样相对密度先减小、后增大,动三轴试验抗液化强度随细粒含量变化趋势与上述相对密度变化趋势一致;对于孔隙比曲线下降段,大部分砂土随细粒含量增大,最小孔隙比下降快,说明细粒主要进入砂粒所组成的孔隙中,最大孔隙比下降慢,细粒主要赋存于砂粒接触点或接触面之间,由于液化问题一般都针对较松散土体,所以等骨架孔隙比意义不大;不同砂土配细粒,最大、最小孔隙比曲线所包括的范围差异很大,即使对同一砂土最大、最小孔隙比曲线,不同的等相对密度线,得出抗液化强度与细粒含量的关系都有区别。因此,最大、最小孔隙比曲线之间的范围(尤其是上半部分),必须得到全面的考虑。
Abstract:
There has been significant controversy and confusion regarding the effects of fines content on liquefaction resistance of sands,and a large number of laboratory test results have little significance for improvement of liquefaction discrimination methods. In this paper,numerous studies reported in literature are analyzed. From the variation in index void ratios for mixtures of sand and silt,it is found that the maximum and the minimum void ratio decreases first and then increases as silt content increases for most of sands. If soil specimens are prepared to a constant void ratio at various silt contents,they will represent different relative densities,and this variation of relative density mirrors the decrease and then increase in cyclic resistance with increasing fine content. Besides,the concept of constant skeleton void ratio is problematic,especially for loose soils liquefaction,because more fine particles are found between surfaces of adjacent sand particles in loose sands than that in dense sands,macroscopic performance is the larger drops in the minimum void ratio than that in the maximum void ratio with initial increasing fine content. There are significant differences for range between the maximum and the minimum void ratio curves of different sands,even for one sand,relationship between liquefaction resistance and fine content will be different for different constant relative density. Therefore,the range between the maximum and the minimum void ratio curves(especially the upper half)must be considered comprehensively.

参考文献/References:

[1] 中国科学院工程力学研究所. 海城地震震害[M]. 北京:地震出版社,1979. Institute of Engineering Mechanics,Chinese Academy of Sciences. Haicheng Earthquake-induced Damages[M]. Beijing:Seismic Press,1979. (in Chinese)
[2] 刘恢先. 唐山大地震震害[M]. 北京:地震出版社,1985. LIU Huixian. The Great Tangshan Earthquake of 1976[M]. Beijing:Seismic Press,1985.(in Chinese)
[3] 钟龙辉. 轻亚粘土地震液化判定方法的分析[J]. 岩土工程学报,1980,2(3):113-122. ZHONG Longhui. Analysis for evaluating liquefaction of low plasticity clays(CL)during earthquake[J]. Chinese Journal of Geotechnical Engineering,1980,2(3):113-122.(in Chinese)
[4] 石兆吉,郁寿松,王余庆,等. 饱和轻亚黏土地基液化可能性判别[J]. 地震工程与工程振动,1984,4(3):71-82. SHI Zhaoji,YU Shousong,WANG Yuqing,et al. Prediction of liquefaction potential of saturated clayey silt[J]. Earthquake Engineering and Engineering Dynamics,1984,4(3):71-82.(in Chinese)
[5] SEED H B,IDRISS I M,ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983,109(3):458-482.
[6] ZHOU S G. Influence of fines on evaluation of liquefaction of sand by CPT[C]//Proceedings of First International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis:International Society for Soil Mechanics and Geotechnical Engineering, 1981(I):167-172.
[7] SEED H B,TOKIMATSU K,HARDER L F,et al. The influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering,1985,111(12):1425-1445.
[8] 谢君斐. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动,1984,4(2):95-126. XIE Junfei. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code[J]. Earthquake Engineering and Engineering Dynamics,1984,4(2):95-126.(in Chinese)
[9] 刘颖. 对"关于修改抗震规范砂土液化判别式的几点意见"一文的讨论[J]. 地震工程与工程振动,1985,5(1):95-97. LIU Ying. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code:Discussion[J]. Earthquake Engineering and Engineering Dynamics,1985,5(1):95-97.(in Chinese)
[10] 谢君斐. 对"关于修改抗震规范砂上液化判别式的几点意见"一文讨论的答复[J]. 地震工程与工程振动,1985,5(1):98-104. XIE Junfei. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code:Reply[J]. Earthquake Engineering and Engineering Dynamics,1985,5(1):98-104.(in Chinese)
[11] 刘颖. 关于修改抗震规范砂上液化判别式问题再同谢君斐同志商榷[J]. 地震工程与工程振动,1986,6(1):82-90. LIU Ying. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code:Further Discussion[J]. Earthquake Engineering and Engineering Dynamics,1986,6(1):82-90.(in Chinese)
[12] 谢君斐. 对"关于修改抗震规范砂上液化判别式问题再同谢君斐同志商榷"一文的答复[J]. 地震工程与工程振动,1986,6(1):91-99. XIE Junfei. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code:Reply again[J]. Earthquake Engineering and Engineering Dynamics,1986,6(1):91-99.(in Chinese)
[13] 吴建平,吴世明. 重塑含粘粒砂土的动模量和液化势[J]. 浙江大学学报,1988,22(6):13-19. WU Jianping,WU Shiming. Dynamic modulus and liquefaction potential of remolded sand with small amount of clay particles[J]. Journal of Zhejiang University,1988,22(6):13-19.(in Chinese)
[14] 范淑菊.夯后轻亚粘土抗液化性能的试验研究[D]. 太原:太原理工大学,1988. FAN Shuju. The Research and Study of Liquefaction Resistant Characteristics of Sandy Loan after Dynamic Compaction[D]. Taiyuan:Taiyuan University of Technology,1988(. in Chinese)
[15] 衡朝阳,何满潮,裘以惠. 含粘粒砂土抗液化性能的试验研究[J]. 工程地质学报,2001,9(4):339-344. HENG Chaoyang,HE Manchao,QIU Yihui. Experimental study of liquefaction-resistance characteristics of clayey sand[J]. Journal of Engineering Geology,2001,9(4):339-344.(in Chinese)
[16] TRONCOSO J H. Failure risks of abandoned tailings dams[C]//Proceedings of International Symposium on Safety and Rehabilitation of Tailings Dams. Paris:International Commission on Large Dams,1990:82-89.
[17] CHANG N Y,YEH S T,KAUFMAN L P. Liquefaction potential of clean and silty sands[C]//Proceedings of the 3rd International Earthquake Microzonation Conference. Seattle:International Association of Earthquake Engineering,1982:1017-1032.
[18] DEZFULIAN H. Effects of silt content on dynamic properties of sandy soils[C]//Proceedings of the 8th World Conference on Earthquake Engineering,San Francisco:International Association of Earthquake Engineering,1982:63-70.
[19] SHEN C K,VRYMOED J L,UYENO C K. The effects of fines on liquefaction of sands[C]//Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering,Tokyo:International Society for Soil Mechanics and Geotechnical Engineering,1977:381-385.
[20] TRONCOSO J H,VERDUGO R. Silt content and dynamic behavior of tailing sands[C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering,San Francisco:International Society for Soil Mechanics and Geotechnical Engineering,1985:1311-1314.
[21] FINN W L,LEDBETTER R H,XU G. Liquefaction in silty soils:Design and analysis[C]//Ground Failures Under Seismic Conditions,Atlanta:American Society of Civil Engineering,Geotechnical Special Publication No. 44,1994:51-76.
[22] VAID V P. Liquefaction of silty soils[C]//Ground Failures Under Seismic Conditions,Atlanta:American Society of Civil Engineering,Geotechnical Special Publication No. 44,1994:1-16.
[23] CAO Y L,LAW K T. Energy approach for liquefaction of sandy and clayey silts[C]//Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,St. Louis:International Society for Soil Mechanics and Geotechnical Engineering,1991:491-497.
[24] LAW K T,LING Y H. Liquefaction of granular soils with non-cohesive and cohesive fines[C]//Proceedings of the 10th World Conference on Earthquake Engineering,Rotterdam:International Association of Earthquake Engineering,1992:1491-1496.
[25] KOESTER J P. The influence of fine type and content on cyclic resistance[C]//Ground Failures Under Seismic Conditions,Atlanta:American Society of Civil Engineering,Geotechnical Special Publication No. 44,1994:17-33.
[26] SINGH S. Liquefaction characteristics of silts[J]. Geotechnical and Geologic Engineering,1996,14(1):1-19.
[27] CHIEN L K,OH Y N,CHANG C H. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil[J]. Canadian Geotechnical Journal,2002,1(5):254-265.
[28] KUERBIS R,NEGUSSEY D,VAID V P. Effect of gradation and fines content on the undrained response of sand[C]//Proceedings:Hydraulic Fill Structures,Fort Collins,1988:330-345.
[29] PRAKASH S,SANDOVAL J A. Liquefaction of low plasticity silts[J]. Soil Dynamics and Earthquake Engineering,1992,11(7):373-379.
[30] GUO T,PRAKASH S. Liquefaction of silts and silt-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):706-710.
[31] YAMAMURO J A,COVERT K M. Monotonic and cyclic liquefaction of very loose sands with high silt content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(4):314-324.
[32] ANTHI P,THEODORA T. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands[J]. Soils and Foundations,2008,48(5):713-725.
[33] DASH H K,SITHARAM T G,BAUDET B A. Influence of non-plastic fines on the response of a silty sand to cyclic loading[J]. Soils and Foundations,2010,50(5):695-704.
[34] POLITO C P,MARTIN J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):408-415.
[35] POLITO C P,MARTIN J R. A reconciliation of the effects of non-plastic fines on the liquefaction resistance of sands reported in the literature[J]. Earthquake Spectra,2003,19(3):635-651.
[36] LADE P V,YAMAMURO J A. Effects of non-plastic fines on static liquefaction of sands[J]. Canadian Geotechnical Journal,1997,34(6):918-928.
[37] THEVANAYAGAM S,MARTIN G R. Liquefaction in silty soils-screening and remediation issue[J]. Soil Dynamics and Earthquake Engineering,2002,22(9):1035-1042.
[38] 吴琪,陈国兴,朱雨萌,等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报,2018,40(10):1912-1922. WU Qi,CHEN Guoxing,ZHU Yumeng,et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering,2018,40(10):1912-1922.(in Chinese)
[39] 李涛,唐小微. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报,2019,41(增刊2):169-172. LI Tao,TANG Xiaowei. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering,2019,41(S2):169-172.(in Chinese)
[40] LADE P V,YAMAMURO J A,LIGGIO G D. Effects of fines content on void ratio,compressibility,and static liquefaction of silty sand[J]. Geomechanics and Engineering,2009,1(1):1-15.
[41] 朱建群,孔令伟,钟方杰. 粉粒含量对砂土强度特性的影响[J]. 岩土工程学报,2007,29(11):1647-1652. ZHU Jianqun,KONG Lingwei,ZHONG Fangjie. Effects of fines content on strength of silty sands[J]. Chinese Journal of Geotechnical Engineering,2007,29(11):1647-1652.(in Chinese)

相似文献/References:

[1]薛新华,杨兴国.基于减法聚类模糊神经网络的砂土液化势判别[J].地震工程与工程振动,2012,32(02):172.
 XUE Xinhua,YANG Xingguo.Application of fuzzy neural network to the prediction of sand liquefaction based on subtraction clustering[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(02):172.
[2]陈龙伟,袁晓铭.求解液化土表位移两种简化理论模型的比较研究[J].地震工程与工程振动,2010,30(06):141.
 CHEN Longwei,YUAN Xiaoming.Comparison between two simplified theoretical models for calculating surface displacement on liquefiable sites[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(02):141.
[3]王维铭,袁晓铭,陈龙伟,等.汶川大地震中德阳地区液化特点分析[J].地震工程与工程振动,2011,31(02):145.
 WANG Weiming,YUAN Xiaoming,CHEN Longwei,et al.Liquefaction characteristic analysis in Deyang region in the Wenchuan earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(02):145.
[4]何剑平,陈卫忠.自由场典型液化特征数值模拟试验[J].地震工程与工程振动,2011,31(02):162.
 HE Jianping,CHEN Weizhong.Numerical simulation experiment of typical liquefaction characteristics for free field[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(02):162.
[5]孙锐,袁晓铭,唐福辉.液化识别方法盲测对比——以2011年2月22日新西兰6.3级地震为例[J].地震工程与工程振动,2011,31(03):001.
 SUN Rui,YUAN Xiaoming,TANG Fuhui.Blind detection of liquefaction sites by existing methods for the 22 Feb.2011 M_s6.3 New Zealand earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(02):001.
[6]王维铭,袁晓铭,孟上九,等.汶川Ms8.0级大地震中成都地区液化特征研究[J].地震工程与工程振动,2011,31(04):137.
 WANG Weiming,YUAN Xiaoming,MENG Shangjiu,et al.Liquefaction characteristics in Chengdu region in Ms8.0 Wenchuan earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(02):137.
[7]曹振中,徐学燕,袁晓铭.江油火车站典型液化震害分析[J].地震工程与工程振动,2013,33(01):166.
 CAO Zhenzhong,XU Xueyan,YUAN Xiaoming.Typical case study on liquefaction-induced damage to Jiangyou Railway Station in Wenchuan Earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(02):166.
[8]李博,Zeng Xiangwu,王艳茹.大应变条件海水浸蚀下人工胶结土动力特性研究[J].地震工程与工程振动,2013,33(01):192.
 LI Bo,ZENG Xiangwu,WANG Yanru.Effect of sea water attack on dynamic behavior of artificially cemented sand in large strain[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(02):192.
[9]金佳旭,梁力,陈天宇,等.基于液化流动模型的尾矿坝地震响应分析[J].地震工程与工程振动,2013,33(03):232.
 JIN Jiaxu,LIANG Li,CHEN Tianyu,et al.Analysis of tailings dam earthquake responses based on liquefaction flow model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(02):232.
[10]汪明武,Susumu Iai.地下RC结构物地震响应特征土工离心试验的模拟[J].地震工程与工程振动,2007,27(03):150.
 WANG Mingwu,Susumu Iai.Numerical simulation of centrifuge modeling for seismic responses of underground RC structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(02):150.

备注/Memo

备注/Memo:
收稿日期:2021-3-17;改回日期:2021-7-8。
基金项目:国家自然科学基金项目(51708525,51608496)
作者简介:李方圆(1994-),男,硕士研究生,主要从事岩土地震工程研究.E-mail:1620638819@qq.com
通讯作者:董林(1985-),男,副研究员,博士,主要从事岩土地震工程研究.E-mail:donglin408@163.com
更新日期/Last Update: 1900-01-01