[1]李宁,王苏安,范佩东,等.空心节段预制拼装RC桥墩的多维抗震性能试验研究[J].地震工程与工程振动,2022,42(06):076-85.[doi:10.13197/j.eeed.2022.0608]
 LI Ning,WANG Suan,FAN Peidong,et al.Experimental study on multi-dimensional seismic performance of rectangular hollow section precast segmental RC bridge column[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(06):076-85.[doi:10.13197/j.eeed.2022.0608]
点击复制

空心节段预制拼装RC桥墩的多维抗震性能试验研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年06期
页码:
076-85
栏目:
第十一届全国地震工程学术会议专题
出版日期:
2022-12-31

文章信息/Info

Title:
Experimental study on multi-dimensional seismic performance of rectangular hollow section precast segmental RC bridge column
作者:
李宁123 王苏安1 范佩东1 张孝航1
1. 天津大学 建筑工程学院, 天津 300350;
2. 滨海土木工程结构与安全教育部重点实验室, 天津 300350;
3. 中国地震局地震工程综合模拟与城乡抗震韧性重点实验室(天津大学), 天津 300350
Author(s):
LI Ning123 WANG Suan1 FAN Peidong1 ZHANG Xiaohang1
1. School of Civil Engineering, Tianjin University, Tianjin 300350, China;
2. Key Laboratory of Coast Civil Structure Safety, Ministry of Education, Tianjin 300350, China;
3. Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration (Tianjin University), Tianjin 300350, China
关键词:
节段拼装桥墩自复位水平双轴加载抗震性能震后残余位移
Keywords:
prefabricated segmental pierre-centeringhorizontal biaxial loadingseismic performanceseismic residual displacement
分类号:
TU997U442.5+5
DOI:
10.13197/j.eeed.2022.0608
摘要:
随着时代的发展和社会的进步,预制拼装技术可提高桥梁建造效率、降低环境影响。预制拼装桥墩同时具备良好的自复位能力,且震后残余位移小。文中设计了新型空心节段预制拼装RC桥墩,通过水平双轴拟静力试验,对节段拼装桥墩在多维耦合作用下的抗震性能进行研究。采用矩形加载路径,对空心节段拼装桥墩的水平的损伤特征、节间接缝开合、水平力-位移关系、预应力下降、刚度退化等进行分析,阐明了空心节段预制RC桥墩的破坏机理,研究了新型桥墩的抗震性能。结果表明:多向耦合水平作用使构件边角破坏严重,加载路径对节段拼装桥墩的耗能能力、自复位能力等都产生重要影响。底部节段在加载位移角达1.5%时混凝土剥落较多,在3.5%的位移角下耗能钢筋拉断,且双向残余位移角可达1.98%和1.42%。双向加载RC墩自复位能力下降严重,可能导致韧性不足。本研究结果为空心节段拼装桥墩的设计和地震区应用提供依据和理论支撑。
Abstract:
With the development progress of society and economy, the prefabricate technology increases the efficiency of bridge construction, and reduces the pollution to environment. While the prefabricated pier has good self-recentering ability with small residual displacement after earthquake events. In this study, a new hollow section precast segmental RC pier is designed. The pier subjected to multi-dimensional horizontal seismic effects is studied through dual axial horizontal quasi-static experimental test. With rectangular loading pattern, the damage evolution charactersitics, joint opening and closing, horizontal force-displacement response, prestress force drop, horizontal stiffness degradation of the segmental piers was analyzed. The damage mechanism of hollow segmental prefabricated RC piers was presented, and the seismic performance of new piers was studied. It is concluded that the multi-directional coupling of the horizontal action led to the element corner damage seriously. The loading path has an important impact on the energy dissipation capacity, self-resetting capacity, and other characteristics of segmental assembled piers. The bottom segment has more concrete spalling with a loading drift ratio up to 1.5%, and the energy dissipation reinforcement cracked with a drift ratio of 3.5% and a residual deformation drift of 1.98% and 1.42% on the two directions, respectively. The self-centering capacity of the pier subjected to bi-directional loading is severely reduced, which may result in inadequate resilience. This study provides a theoretical basis for the design and application of hollow segmental piers in seismic zone.

参考文献/References:

[1] 肖仕伟,汪强,冯开胜. 预制拼装桥墩在城市高架桥中的应用与研究[J]. 中华建设,2020(29):136-139. XIAO Shiwei,WANG Qiang,FENG Kaisheng. Application of prefabricated assembled pier in urban bridges[J]. China Construction,2020(29):136-139.(in Chinese)
[2] SIDERIS P,AREF A J,FILIATRAULT A. Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints[J]. Journal of Bridge Engineering,2014,19(10):4014036.
[3] WANG J C,OU Y C,CHANG K C,et al. Large-scale seismic tests of tall concrete bridge columns with precast segmental construction[J]. Earthquake Engineering & Structural Dynamics,2008,37(12):1449-1465.
[4] BU Z Y,OU Y C,SONG J W,et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering,2016,21(2):4015043.
[5] OU Y C,TSAI M S,CHANG K C,et al. Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars[J]. Earthquake Engineering & Structural Dynamics,2010,39(11):1181-1198.
[6] BILLINGTON S L,YOON J K. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete[J]. Journal of Bridge Engineering,2004,9(4):353-363.
[7] OU Y C,WANG P H,TSAI M S,et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of Structural Engineering,2010,136(3):255-264.
[8] MARRIOTT D,PAMPANIN S,PALERMO A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics,2009,38(3):331-354.
[9] SIDERIS P,AREF A J,FILIATRAULT A. Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints[J]. Journal of Bridge Engineering,2014,19(10):4014036.
[10] SIDERIS P,AREF A J,FILIATRAULT A. Large-scale seismic testing of a hybrid sliding-rocking posttensioned segmental bridge system[J]. Journal of Structural Engineering,2014,140(6):040140256.
[11] GUO T,CAO Z L,XU Z K,et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering,2016,142(1):04015088.
[12] ZHANG D,Li N,Li Z X. Seismic performance of precast segmental concrete-filled steel-tube bridge columns with internal and external energy Dissipaters[J]. Journal of Bridge Engineering,2021,26(11):04021085.
[12] ZHANG D,LI N,LI Z X. Seismic performance of precast segmental concrete-filled steel-tube bridge columns with internal and external energy dissipaters[J]. Journal of Bridge Engineering,2021,26(11):04021085.
[13] 赵建锋,孟庆一. 基于干接缝单元的预制拼装桥墩抗震性能数值模拟[J]. 地震工程与工程振动,2020,40(2):111-122. ZHAO Jianfeng,MENG Qingyi. Numerical simulation of seismic performance of precast segmental bridge piers based on dry joint element[J]. Earthquake Engineering and Engineering Dynamics,2020,40(2):111-122.(in Chinese)
[14] HEWES J T,PRIESTLEY M. Seismic Design and Performance of Precast Concrete Segmental Bridge Columns[R]. San Diego:University of California,2002.
[15] 张丹,李宁. 节段拼装自复位钢管混凝土单跨桥梁抗震性能振动台试验研究[J]. 建筑结构学报,2021,42(增刊2):382-390. ZHANG Dan,LI Ning. Shaking table test study on seismic performance of segmental-assembled self-centering concrete-filled steel tube single-span bridge[J]. Journal of Building Structures,2021,42(S2):382-390.(in Chinese)
[16] CHOU C C,CHEN Y C. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake Engineering & Structural Dynamics,2006,35(2):159-175.
[17] GOTO Y,JIANG K S,OBATA M. Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering,2006,132(10):1621-1631.
[18] RODRIGUES H,VARUM H,ARêDE A,et al. A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading[J]. Engineering Structures,2012,35:149-164.
[19] RODRIGUES H,ARêDE A,VARUM H,et al. Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading[J]. Earthquake Engineering & Structural Dynamics,2013,42(2):239-259.
[20] RODRIGUES H,ARêDE A,VARUM H,et al. Damage evolution in reinforced concrete columns subjected to biaxial loading[J]. Bulletin of Earthquake Engineering,2013,11(5):1517-1540.
[21] LI C,HAO H,BI K M. Seismic performance of precast concrete-filled circular tube segmental column under biaxial lateral cyclic loadings[J]. Bulletin of Earthquake Engineering,2019,17(1):271-296.
[22] JTGD 62-2012公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社,2012. JTGD 62-2012 Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S]. Beijing:China Communications Press,2012.(in Chinese)
[23] JTG/TB 02-1-2020公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2020. JTG/TB 02-1-2020 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press,2020.(in Chinese)

相似文献/References:

[1]曲哲,张令心.日本钢筋混凝土结构抗震加固技术现状与发展趋势[J].地震工程与工程振动,2013,33(04):061.
 QU Zhe,ZHANG Lingxin.State of the art and development tendency of seismic retrofit for reinforced concrete structures in Japan[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):061.
[2]党像梁,吕西林,周颖.底部开水平缝摇摆剪力墙抗震性能分析[J].地震工程与工程振动,2013,33(05):182.
 DANG Xiangliang,LU Xilin,ZHOU Ying.Study on seismic performance of a rocking wall with bottom horizontal slits[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):182.
[3]党像梁,吕西林,周颖.底部开水平缝预应力自复位剪力墙试验研究及数值模拟[J].地震工程与工程振动,2014,34(04):154.[doi:10.13197/j.eeev.2014.04.154.dangxl.020]
 DANG Xiangliang,LU Xilin,ZHOU Ying.Experimental study and numerical simulation of self-centering shear walls with horizontal bottom slit[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):154.[doi:10.13197/j.eeev.2014.04.154.dangxl.020]
[4]陈云,陈奕柏,蒋欢军,等.自复位耗能支撑研究进展[J].地震工程与工程振动,2014,34(05):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
 CHEN Yun,CHEN Yibo,JIANG Huanjun,et al.Research progress in self-centering energy dissipating braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
[5]党像梁,吕西林,周颖.底部开水平缝预应力自复位剪力墙试验设计及结果分析[J].地震工程与工程振动,2014,34(06):103.[doi:10.13197/j.eeev.2014.06.103.dangxl.014]
 DANG Xiangliang,LU Xilin,ZHOU Ying.Experimental design and measured behavior analysis of self-centering shear walls with horizontal bottom slit[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):103.[doi:10.13197/j.eeev.2014.06.103.dangxl.014]
[6]刘哲锋,郭佳,李鹏,等.悬臂摩擦式自复位RC框架节点的试验研究[J].地震工程与工程振动,2016,36(06):102.[doi:10.13197/j.eeev.2016.06.102.liuzf.013]
 LIU Zhefeng,GUO Jia,LI Peng,et al.Experimental study on cantilever beam-column connections of self-centering reinforced concrete frame with friction devices[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(06):102.[doi:10.13197/j.eeev.2016.06.102.liuzf.013]
[7]秦明霞,张于晔,翟勇,等.预应力筋布置对节段拼装桥墩抗震性能的影响[J].地震工程与工程振动,2018,38(04):158.[doi:10.13197/j.eeev.2018.04.158.qinmx.023]
 QIN Mingxia,ZHANG Yuye,ZHAI Yong,et al.Influence of prestressed strands layout on the seismic behavior of segmental bridge piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(06):158.[doi:10.13197/j.eeev.2018.04.158.qinmx.023]
[8]鲁亮,陈凯芳,黄子恒.基于静力试验的体外预应力自复位框架地震响应数值模拟[J].地震工程与工程振动,2019,39(01):138.[doi:10.13197/j.eeev.2019.01.138.lul.016]
 LU Liang,CHEN Kaifang,HUANG Ziheng.Simulation on the earthquake response of external prestressed self-centering frame based on static test[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):138.[doi:10.13197/j.eeev.2019.01.138.lul.016]
[9]朱丽华,吉翠茹,李鸿雕,等.腹板摩擦式自复位圆钢管混凝土柱-钢梁连接节点受力性能有限元模拟及参数分析[J].地震工程与工程振动,2019,39(05):104.[doi:10.13197/j.eeev.2019.05.104.zhulh.010]
 ZHU Lihua,JI Cuiru,LI Hongdiao,et al.Numerical and parametric study on the mechanical properties of self-centering circular concrete-filled steel tubular column to steel beam connection with web friction device[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):104.[doi:10.13197/j.eeev.2019.05.104.zhulh.010]
[10]王素裹,吴敏.框架-摇摆墙结构设计方法与研究现状分析[J].地震工程与工程振动,2020,40(02):154.[doi:10.13197/j.eeev.2020.02.154.wangsg.016]
 WANG Suguo,WU Min.State-of-the-art and design methods on frame-rocking wall structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(06):154.[doi:10.13197/j.eeev.2020.02.154.wangsg.016]

备注/Memo

备注/Memo:
收稿日期:2022-07-11;改回日期:2022-10-11。
基金项目:国家重点研发计划项目(2019YFE0112500);国家自然科学基金面上项目(52178496,51678407)
作者简介:李宁(1981-),男,教授,博士,主要从事工程抗震减振控制方面的研究.E-mail:neallee@tju.edu.cn
更新日期/Last Update: 1900-01-01