参考文献/References:
[1] QU Y L,CHEN D H,LIU L,et al. A direct time-domain procedure for the seismic analysis of dam-foundation-reservoir systems using the scaled boundary finite element method[J]. Computers and Geotechnics,2021,138:104364.
[2] BAO X,LIU J B,LI S T,et al. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves[J]. Ocean Engineering, 2020,200:107021.
[3] 楼梦麟,王文剑,朱彤,等. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动,2000,20(4):30-36. LOU Menglin,WANG Wenjian,ZHU Tong,et al. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics,2000,20(4):30-36.(in Chinese)
[4] LI W T,CHEN Q J. Effect of vertical ground motions and overburden depth on the seismic responses of large underground structures[J]. Engineering Structures,2020,205:110073.
[5] ZHANG G L,ZHAO M,DU X L,et al. 1D finite element artificial boundary method for transient response of ocean site under obliquely incident earthquake waves[J]. Soil Dynamics and Earthquake Engineering,2019,126:105787.
[6] LIU J B,WANG Y. A 1D time-domain method for in-plane wave motions in a layered half-space[J]. Acta Mechanica Sinica,2007,23(6):673- 680.
[7] 杜修力,李洋,赵密,等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学,2017,34(5):52-59. DU Xiuli,LI Yang,ZHAO Mi,et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics,2017,34(5):52-59.(in Chinese)
[8] LI Y,ZHAO M,XU C S,et al. Earthquake input for finite element analysis of soil-structure interaction on rigid bedrock[J]. Tunnelling and Underground Space Technology,2018,79:250-262.
[9] ZHAO M,ZHANG G L,WANG P G,et al. An accurate frequency-domain model for seismic responses of breakwater-seawater-seabed-bedrock system[J]. Ocean Engineering,2020,197:106843.
[10] ZHAO M,YIN H Q,DU X L,et al. 1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake[J]. Earthquakes and Structures,2015,9(1):173-194.
[11] SONG C M,WOLF J. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
[12] OOI E T,MAN H,NATARAJAN S,et al. Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling[J]. Engineering Fracture Mechanics,2015,144:101-117.
[13] HIRSHIKESH,PRAMOD A L N,ANNABATTULA R K,et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method[J]. Computer Methods in Applied Mechanics and Engineering,2019,355:284-307.
[14] QU Y L,ZHANG J Q,EISENTR?ER S,et al. A time-domain approach for the simulation of three-dimensional seismic wave propagation using the scaled boundary finite element method[J]. Soil Dynamics and Earthquake Engineering,2022,152:107011.
[15] WOLF J P. Soil-Structure-Interaction Analysis in Time Domain[M]. United States:AA Balkema Publishers,1987.
[16] SONG C M. The Scaled Boundary Finite Element Method:Introduction to Theory and Implementation[M]. Chichester,UK:John Wiley & Sons, Ltd,2018.
[17] CHEN X J,BIRK C,SONG C M. Numerical modelling of wave propagation in anisotropic soil using a displacement unit-impulse-response-based formulation of the scaled boundary finite element method[J]. Soil Dynamics and Earthquake Engineering,2014,65:243-255.
[18] LIU J B,DU Y X,DU X L,et al. 3D viscous-spring artificial boundary in time domain[J]. Earthquake Engineering and Engineering Vibration, 2006,5(1):93-102.
[19] CHEN X J,BIRK C,SONG C M. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method[J]. Computers and Geotechnics,2015,63:1-12.
[20] 廖振鹏. 工程波动理论导引[M]. 北京:科学出版社,1996. LIAO Zhenpeng. Introduction to Wave Motion Theories in Engineering[M]. Beijing:Science Press,1996.(in Chinese)
相似文献/References:
[1]王冲,薄景山,齐文浩,等.输入界面对地表加速度峰值的影响[J].地震工程与工程振动,2011,31(06):055.
WANG Chong,BO Jingshan,QI Wenhao,et al.The effect of inputting interface of earthquake ground motion on the ground peak accelerations[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):055.
[2]周颖,洪磊.地震动选取方法对超高层结构抗震性能的影响[J].地震工程与工程振动,2013,33(02):060.
ZHOU Ying,HONG Lei.The effect of ground-motion selections on seismic performance of a super-tall structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):060.
[3]董胜利,李小军,亓兴军.简支梁桥减震半主动控制算法研究[J].地震工程与工程振动,2007,27(04):156.
DONG Shengli,LI Xiaojun,QI Xingjun.Study on seismic semi-active control algorithms for simply supported beam bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(06):156.
[4]王国新,黄坤朋.表层土结构对地表地震动的影响研究[J].地震工程与工程振动,2013,33(05):033.
WANG Guoxin,HUANG Kunpeng.Effects of surface soil on ground motion characters[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):033.
[5]姬淑艳,韩军,李英民,等.带深桩基础高层建筑结构的地震动输入问题[J].地震工程与工程振动,2006,26(05):231.
Ji Shuyan,Han Jun,Li Yingmin,et al.Study on ground motion excitation for seismic design of tall buildings with deep pile foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(06):231.
[6]梁建文,齐晓原,巴振宁.基于黏弹性边界的三维凹陷地形地震响应分析[J].地震工程与工程振动,2014,34(04):021.[doi:10.13197/j.eeev.2014.04.21.liangjw.003]
LIANG Jianwen,QI Xiaoyuan,BA Zhenning.Seismic response analysis of 3D canyon based on the viscous-spring boundary[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):021.[doi:10.13197/j.eeev.2014.04.21.liangjw.003]
[7]刘璐,周颖,胡凯,等.双向地震动输入对高层隔震结构的响应影响研究[J].地震工程与工程振动,2014,34(06):033.[doi:10.13197/j.eeev.2014.06.33.liul.005]
LIU Lu,ZHOU Ying,HU Kai,et al.Study on the effect of bilateral ground motion inputs on the responses of a high-rise isolated structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):033.[doi:10.13197/j.eeev.2014.06.33.liul.005]
[8]温瑞智,冀昆,任叶飞.结构时程分析中多层次强震动记录输入选取研究综述[J].地震工程与工程振动,2019,39(05):001.[doi:10.13197/j.eeev.2019.05.1.wenrz.001]
WEN Ruizhi,JI Kun,REN Yefei.Review on selection of strong ground motion input for structural time-history dynamic analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):001.[doi:10.13197/j.eeev.2019.05.1.wenrz.001]