[1]渠艳龄,朱柏洁.SV波垂直入射下成层半空间地震动输入模型比较[J].地震工程与工程振动,2022,42(06):136-143.[doi:10.13197/j.eeed.2022.0615]
 QU Yanling,ZHU Baijie.Comparison of seismic input models for a layered half plane subjected to vertically incident SV waves[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(06):136-143.[doi:10.13197/j.eeed.2022.0615]
点击复制

SV波垂直入射下成层半空间地震动输入模型比较
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年06期
页码:
136-143
栏目:
第十一届全国地震工程学术会议专题
出版日期:
2022-12-31

文章信息/Info

Title:
Comparison of seismic input models for a layered half plane subjected to vertically incident SV waves
作者:
渠艳龄12 朱柏洁12
1. 中国地震局工程力学研究所 地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 地震灾害防治应急管理部重点实验室, 黑龙江 哈尔滨 150080
Author(s):
QU Yanling12 ZHU Baijie12
1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China;
2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China
关键词:
地震动输入成层半空间远场比例边界有限元法
Keywords:
seismic inputlayered half planefar fieldscaled boundary finite element method
分类号:
O347.4+1
DOI:
10.13197/j.eeed.2022.0615
摘要:
在土-结构动力相互作用问题中常将该耦合结构体系分为远场和近场。远场地震动可施加在近场的底部和侧边界,或者仅施加在近场成层介质的底部。为研究这2种地震动输入模型的异同,文中利用比例边界有限元法严谨地模拟了远场动力刚度,实现等效地震动的输入;同时结合平面波波动理论,分析计算了SV波垂直输入时二维自由场地地震响应,研究了侧边界处地震荷载对自由场运动的影响,比较了不同地震动输入模型下等效地震力的大小。研究表明:侧向地震力对自由场动力反应的影响不可忽略,其影响随着近场宽度的增大而呈指数减少趋势。当均质弹性近场的宽深比(2d/h)大于36时,采用底部输入模型求得的自由场运动数值解与理论解的误差在5%之内。在底部输入模型中,相比于考虑地震波在整个自由场传播,假设地震波在下卧层传播可减小自由场运动求解误差。
Abstract:
A soil-structure coupling system is often divided into a near field that is of interest and the remaining far field. Far-field excitations caused by earthquakes are applied at the bottom and lateral of the near field, or alternatively applied purely at the bottom in a case of layered half plane. The relation between these two approaches, however, is not clear and still needs future investigation. To this end, both the dynamic stiffness of the far field and seismic loading are modeled in a rigorous manner by using the scaled boundary finite element method. Then, numerical simulations on wave propagation in layered half planes subjected to vertically incident SV waves are performed using two seismic input models. In comparison with theoretical solutions, it is found that the influence of lateral-boundary seismic excitation on free field motion is reduced exponentially with the width of near field. The numerical results corresponding to pure bottom-boundary seismic loading are close to theoretical results with relative difference less than 5%, if the width-depth(2d/h)of the near field is greater than 36. When seismic load is applied on the bottom, the resulting free-field motion is more accurate by assuming wave propagation in an underlying half plane than in the whole field.

参考文献/References:

[1] QU Y L,CHEN D H,LIU L,et al. A direct time-domain procedure for the seismic analysis of dam-foundation-reservoir systems using the scaled boundary finite element method[J]. Computers and Geotechnics,2021,138:104364.
[2] BAO X,LIU J B,LI S T,et al. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves[J]. Ocean Engineering, 2020,200:107021.
[3] 楼梦麟,王文剑,朱彤,等. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动,2000,20(4):30-36. LOU Menglin,WANG Wenjian,ZHU Tong,et al. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics,2000,20(4):30-36.(in Chinese)
[4] LI W T,CHEN Q J. Effect of vertical ground motions and overburden depth on the seismic responses of large underground structures[J]. Engineering Structures,2020,205:110073.
[5] ZHANG G L,ZHAO M,DU X L,et al. 1D finite element artificial boundary method for transient response of ocean site under obliquely incident earthquake waves[J]. Soil Dynamics and Earthquake Engineering,2019,126:105787.
[6] LIU J B,WANG Y. A 1D time-domain method for in-plane wave motions in a layered half-space[J]. Acta Mechanica Sinica,2007,23(6):673- 680.
[7] 杜修力,李洋,赵密,等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学,2017,34(5):52-59. DU Xiuli,LI Yang,ZHAO Mi,et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics,2017,34(5):52-59.(in Chinese)
[8] LI Y,ZHAO M,XU C S,et al. Earthquake input for finite element analysis of soil-structure interaction on rigid bedrock[J]. Tunnelling and Underground Space Technology,2018,79:250-262.
[9] ZHAO M,ZHANG G L,WANG P G,et al. An accurate frequency-domain model for seismic responses of breakwater-seawater-seabed-bedrock system[J]. Ocean Engineering,2020,197:106843.
[10] ZHAO M,YIN H Q,DU X L,et al. 1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake[J]. Earthquakes and Structures,2015,9(1):173-194.
[11] SONG C M,WOLF J. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
[12] OOI E T,MAN H,NATARAJAN S,et al. Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling[J]. Engineering Fracture Mechanics,2015,144:101-117.
[13] HIRSHIKESH,PRAMOD A L N,ANNABATTULA R K,et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method[J]. Computer Methods in Applied Mechanics and Engineering,2019,355:284-307.
[14] QU Y L,ZHANG J Q,EISENTR?ER S,et al. A time-domain approach for the simulation of three-dimensional seismic wave propagation using the scaled boundary finite element method[J]. Soil Dynamics and Earthquake Engineering,2022,152:107011.
[15] WOLF J P. Soil-Structure-Interaction Analysis in Time Domain[M]. United States:AA Balkema Publishers,1987.
[16] SONG C M. The Scaled Boundary Finite Element Method:Introduction to Theory and Implementation[M]. Chichester,UK:John Wiley & Sons, Ltd,2018.
[17] CHEN X J,BIRK C,SONG C M. Numerical modelling of wave propagation in anisotropic soil using a displacement unit-impulse-response-based formulation of the scaled boundary finite element method[J]. Soil Dynamics and Earthquake Engineering,2014,65:243-255.
[18] LIU J B,DU Y X,DU X L,et al. 3D viscous-spring artificial boundary in time domain[J]. Earthquake Engineering and Engineering Vibration, 2006,5(1):93-102.
[19] CHEN X J,BIRK C,SONG C M. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method[J]. Computers and Geotechnics,2015,63:1-12.
[20] 廖振鹏. 工程波动理论导引[M]. 北京:科学出版社,1996. LIAO Zhenpeng. Introduction to Wave Motion Theories in Engineering[M]. Beijing:Science Press,1996.(in Chinese)

相似文献/References:

[1]王冲,薄景山,齐文浩,等.输入界面对地表加速度峰值的影响[J].地震工程与工程振动,2011,31(06):055.
 WANG Chong,BO Jingshan,QI Wenhao,et al.The effect of inputting interface of earthquake ground motion on the ground peak accelerations[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):055.
[2]周颖,洪磊.地震动选取方法对超高层结构抗震性能的影响[J].地震工程与工程振动,2013,33(02):060.
 ZHOU Ying,HONG Lei.The effect of ground-motion selections on seismic performance of a super-tall structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):060.
[3]董胜利,李小军,亓兴军.简支梁桥减震半主动控制算法研究[J].地震工程与工程振动,2007,27(04):156.
 DONG Shengli,LI Xiaojun,QI Xingjun.Study on seismic semi-active control algorithms for simply supported beam bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(06):156.
[4]王国新,黄坤朋.表层土结构对地表地震动的影响研究[J].地震工程与工程振动,2013,33(05):033.
 WANG Guoxin,HUANG Kunpeng.Effects of surface soil on ground motion characters[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(06):033.
[5]姬淑艳,韩军,李英民,等.带深桩基础高层建筑结构的地震动输入问题[J].地震工程与工程振动,2006,26(05):231.
 Ji Shuyan,Han Jun,Li Yingmin,et al.Study on ground motion excitation for seismic design of tall buildings with deep pile foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(06):231.
[6]梁建文,齐晓原,巴振宁.基于黏弹性边界的三维凹陷地形地震响应分析[J].地震工程与工程振动,2014,34(04):021.[doi:10.13197/j.eeev.2014.04.21.liangjw.003]
 LIANG Jianwen,QI Xiaoyuan,BA Zhenning.Seismic response analysis of 3D canyon based on the viscous-spring boundary[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):021.[doi:10.13197/j.eeev.2014.04.21.liangjw.003]
[7]刘璐,周颖,胡凯,等.双向地震动输入对高层隔震结构的响应影响研究[J].地震工程与工程振动,2014,34(06):033.[doi:10.13197/j.eeev.2014.06.33.liul.005]
 LIU Lu,ZHOU Ying,HU Kai,et al.Study on the effect of bilateral ground motion inputs on the responses of a high-rise isolated structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):033.[doi:10.13197/j.eeev.2014.06.33.liul.005]
[8]温瑞智,冀昆,任叶飞.结构时程分析中多层次强震动记录输入选取研究综述[J].地震工程与工程振动,2019,39(05):001.[doi:10.13197/j.eeev.2019.05.1.wenrz.001]
 WEN Ruizhi,JI Kun,REN Yefei.Review on selection of strong ground motion input for structural time-history dynamic analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):001.[doi:10.13197/j.eeev.2019.05.1.wenrz.001]

备注/Memo

备注/Memo:
收稿日期:2022-06-23;改回日期:2022-09-15。
基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(2019B03,2019A02);黑龙江省青年科技人才托举工程资助(2022QNTJ018)
作者简介:渠艳龄(1992-),女,助理研究员,博士,主要从事地震波传播研究.E-mail:quyl@iem.ac.cn
通讯作者:朱柏洁(1987-),男,副研究员,博士,主要从事高层建筑消能减震方面研究.E-mail:baijie_zhu@126.com
更新日期/Last Update: 1900-01-01