[1]申玉生,陈孔福,李小彤,等.强震区仰坡角度对跨断层隧道结构动力响应影响研究[J].地震工程与工程振动,2022,42(06):192-201.[doi:10.13197/j.eeed.2022.0621]
 SHEN Yusheng,CHEN Kongfu,LI Xiaotong,et al.Influence analysis of front slope angle on dynamic response of tunnel structure through fault in strong earthquake area[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2022,42(06):192-201.[doi:10.13197/j.eeed.2022.0621]
点击复制

强震区仰坡角度对跨断层隧道结构动力响应影响研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
42
期数:
2022年06期
页码:
192-201
栏目:
研究论文
出版日期:
2022-12-31

文章信息/Info

Title:
Influence analysis of front slope angle on dynamic response of tunnel structure through fault in strong earthquake area
作者:
申玉生1 陈孔福1 李小彤2 曾志华3 王耀达1 雷龙1
1. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031;
2. 中交第二公路工程局有限公司工程设计研究院, 陕西 西安 710076;
3. 中国石油天然气管道工程有限公司, 河北 廊坊 065000
Author(s):
SHEN Yusheng1 CHEN Kongfu1 LI Xiaotong2 ZENG Zhihua3 WANG Yaoda1 LEI Long1
1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China;
2. Engineering Design and Research Institute of CCCC Second Highway Engineering Bureau Co., Ltd., Xi’an 710076, China;
3. China Petroleum Pipeline Engineering Co., Ltd., Langfang 065000, China
关键词:
管道隧道动力响应断层仰坡坡角主应力放大系数设防长度
Keywords:
pipeline tunneldynamic responsefaultfront slope angleamplification coefficient of principal stressfortification length
分类号:
U458
DOI:
10.13197/j.eeed.2022.0621
摘要:
随着西部大量复杂地质环境条件下隧道工程建设,由此在洞口段也经常出现断层破碎带,强震作用下隧道易遭受严重破坏,尤其断层与仰坡的倾向关系尤为重要。文中依托中亚某线管道隧道工程(PGA为0.6g),通过数值模拟对与仰坡倾向相反的断层段隧道衬砌的动力响应开展研究,分析了不同仰坡坡角对跨断层隧道洞口段动力响应的影响。研究表明:地震作用时,随着仰坡坡角由30°增大到75°,隧道共轭45°相对位移峰值与分布范围与之正相关;震后隧道衬砌存在更严重的残余变形;拱腰与拱顶最小主应力值与应力集中范围也随之增大。沿轴向同一位置拱顶的最小主应力放大系数随着仰坡坡角的增加而增大,尤其仰坡坡角由60°增至75°时断层处放大系数增大30%,放大系数突变范围增大60%。经研究发现:隧道穿越与仰坡反倾向的断层破碎带时,仰坡坡角应尽量避免大于60°,抗震设防范围为洞口与断层面之间以及断层面向洞身延伸4倍隧道跨径。同时隧道共轭45°角方向是结构抗震薄弱部位,需要加强抗震设计。文中研究成果对超强震区穿越与仰坡倾向相反断层的隧道洞口段结构抗减震设计具有一定的参考价值。
Abstract:
With the construction of tunnel engineering under a large number of complex geological environment conditions in the west, fault fracture zones often appear in the portal section. The tunnel structure is easy to be seriously damaged under strong earthquakes, especially the relationship of inclination between the fault and front slope is particularly important. Based on a pipeline tunnel project in Central Asia(PGA is 0.6 g), this paper studied the dynamic response of the tunnel structure in the fault section opposite to the inclination the front slope by numerical simulation, and analyzed the influence of different slope angles on the dynamic response of the tunnel portal section across the fault. The research shows that with the increasing of the front slope angle from 30° to 75° under earthquakes, the peak value and distribution range of conjugate 45° relative displacement of tunnel are a positive correlation with the angle;the tunnel lining has more serious residual deformation after the earthquake;the minimum principal stress value and concentration range of arch waist and vault also increase with angle. The amplification coefficient of the minimum principal stress of the vault at the same position along the axial direction increases with the increase of the front slope angle. Especially, when the front slope angle increases from 60° to 75°, the amplification coefficient at the fault increases by 30% and the sudden change range of the coefficient increases by 60%. It is found that when the tunnel passes through the fault fracture zone with reverse inclination to the front slope, the front slope angle should avoid the angle greater than 60° as far as possible, and the seismic fortification range should be from the portal to the fault and extend 4 times the tunnel span to tunnel body. And the conjugate 45° direction of the tunnel is the weak seismic part of the structure and need strengthen the seismic design. The research results have a certain reference value for the anti-seismic design of tunnel portal section passing through the fault with opposite inclination to the front slope in super strong seismic area.

参考文献/References:

[1] 王丽丽,吴志坚,梁庆国,等. 仰坡坡度对隧道洞口段动力响应的影响分析[J]. 地震工程学报,2016,38(4):519-524. WANG Lili,WU Zhijian,LIANG Qingguo,et al. Influence of slope gradient on dynamic response in portal section of tunnel[J]. China Earthquake Engineering Journal,2016,38(4):519-524.(in Chinese)
[2] 王树明. 黄土隧道洞口段高陡仰坡动力响应特征研究[D]. 兰州:兰州交通大学,2020. WANG Shuming. The Study on Dynamic Response Characteristics of High Steep Slope at Portal Section of Loess Tunnel[D]. Lanzhou:Lanzhou Jiaotong Uniwersity,2020.(in Chinese)
[3] 梁庆国,边磊,张钦鹏,等. 大断面黄土隧道洞口段地震动力特性研究[J]. 公路交通科技,2018,35(7):65-76. LIANG Qingguo,BIAN Lei,ZHANG Qinpeng,et al. Study on seismic dynamic characteristics of large section loess tunnel portal[J]. Journal of Highway and Transportation Research and Development,2018,35(7):65-76.(in Chinese)
[4] 房军,梁庆国,张钦鹏,等. 考虑边坡进洞高程的黄土隧道洞口段动力响应数值模拟[J]. 地震工程与工程振动,2018,38(3):152-161. FANG Jun,LIANG Qingguo,ZHANG Qinpeng,et al. Numerical simulation of dynamic responses of loess tunnel portal section with the consideration of tunneling elevation on the slope[J]. Earthquake Engineering and Engineering Dynamics,2018,38(3):152-161.(in Chinese)
[5] 张楠. 高烈度地区穿越断层破碎带公路隧道地震响应分析[D]. 兰州交通大学,2019. ZHANG Nan. Seismic Response Analysis of a Highway Tunnel crossing Fault Fracture Zone in High Intensity Area[D]. Lanzhou:Lanzhou Jiaotong University,2019.(in Chinese)
[6] 梁波,杨仕恒,赵冯兵,等. 特大断面隧道断层段地震响应与断层构造关系[J]. 科学技术与工程,2020,20(34):14272-14277. LIANG. Bo,YANG Shiheng,ZHAO Fengbing,et al. The relationship between seismic response and fault structure in fault section of extra-large section tunnel[J]. Science Technology and Engineering,2020,20(34):14272-14277.(in Chinese)
[7] 杨步云,陈俊涛,肖明. 跨断层地下隧洞隧道衬砌地震响应及损伤机理研究[J]. 岩土工程学报,2020,42(11):2078-2087. YANG Buyun,CHEN Juntao,XIAO Ming. Seismic response and damage mechanism of lining structures for underground tunnels across fault[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2078-2087.(in Chinese)
[8] 陈亮,王永亮,文栋梁,等. 嘎隆拉隧道断层区进洞口段轴向地震响应及抗震缝效果研究[J]. 交通科技,2013(5):86-90. CHEN Liang,WANG Yongliang,WEN Dongliang,et al. Longitudinal seismic response and effect of aseismic joint of tunnel entrance in fault zone[J]. Transportation Science & Technology,2013(5):86-90.(in Chinese)
[9] 申玉生,邹成路,靳宗振,等. 穿越软硬断层面隧道衬砌动力响应特性研究[J]. 现代隧道技术,2015,52(3):95-102. SHEN Yusheng,ZOU Chenglu,JIN Zongzhen,et al. A study of the dynamic response characteristics of a tunnel structure through an interface of soft and hard rock[J]. Modern Tunneling Technology,2015,52(3):95-102.(in Chinese)
[10] 崔光耀,王明年,于丽,等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报,2013,35(6):1084-1091. CUI Guangyao,WANG Mingnian,YU Li,et al. Seismic damage and mechanism of portal structure of highway tunnels in Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering,2013,35(6):1084-1091.(in Chinese)
[11] 崔光耀,王明年,于丽,等. 汶川地震断层破碎带段隧道衬砌震害分析及震害机理研究[J]. 土木工程学报,2013,46(11):122-127. CUI Guangyao,WANG Mingnian,YU Li,et al. Study on the characteristics and mechanism of seismic damage for tunnel structures on fault rupture zone in Wenchuan seismic disastrous area[J]. China Civil Engineering Journal,2013,46(11):122-127.(in Chinese)
[12] 周德培,张建经,汤涌. 汶川地震中道路仰坡工程震害分析[J]. 岩石力学与工程学报,2010,29(3):565-576. ZHOU Depei,ZHANG Jianjing,TANG Yong. Seismic damage analysis of road slopes in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):565-576.(in Chinese)
[13] 陈清军,李文婷. 地铁车站-隧道-土相互作用体系地震反应[J]. 地震工程与工程振动,2018,38(4):9-15. CHEN Qingjun,LI Wenting. Seismic responses analysis of subway station-tunnels-soil-interaction system[J]. Earthquake Engineering and Engineering Dynamics,2018,38(4):9-15.(in Chinese)
[14] 艾胜军,梁庆国,赵涛,等. 黄土隧道洞口段坡-隧系统地震动力响应振动台试验研究[J]. 地震工程与工程振动,2020,40(6):168-177. AI Shengjun,LIANG Qingguo,ZHAO Tao,et al. Shaking table experimental study on seismic dynamic response of slope-tunnel system at the portal section of loess tunnel[J]. Earthquake Engineering and Engineering Dynamics,2020,40(6):168-177.(in Chinese)
[15] 王芳其. 穿越次级断层隧道地震动力响应及减震层效果分析[J]. 公路交通技术,2018,34(2):68-74. WANG Fangqi. Analysis on seismic dynamic response and effect of shock absorption layer of tunnels passing through the secondary fault[J]. Technology of Highway and Transport,2018,34(2):68-74.(in Chinese)
[16] 王秋懿,杨奎,毛金龙,等. 九度地震区公路隧道二次衬砌结构抗震综合措施研究[J]. 现代隧道技术,2019,56(5):42-49. WANG Qiuyi,YANG Kui,MAO Jinlong,et al. Study on the comprehensive aseismic measures for the secondary lining structure of highway tunnels in nine-degree seismic region[J]. Modern Tunneling Technology,2019,56(5):42-49.(in Chinese)
[17] 于辉,赵国臣,徐龙军,等. 穿越上软下硬地层海底隧道衬砌横向地震响应分析[J]. 地震工程与工程振动,2021,41(2):211-218. YU Hui,ZHAO Guochen,XU Longjun,et al. Analysis of submarine tunnel linings in rising region crossing upper soft and lower hard stratum to transversal seismic load[J]. Earthquake Engineering and Engineering Dynamics,2021,41(2):211-218.(in Chinese)
[18] 何川,李林,张景,等. 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报,2014,36(3):427-434. HE Chuan,LI Lin,ZHANG Jing,et al. Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014,36(3):427-434.(in Chinese)
[19] 刘颀楠. 山岭隧道洞门段衬砌结构动力响应及震害机理研究[J]. 中外公路,2017,37(2):203-209. LIU Xinnan. Study on dynamic response and seismic damage mechanism of tunnel portal lining structure of mountain tunnel[J]. Journal of China & Foreign Highway,2017,37(2):203-209.(in Chinese)
[20] 申玉生,唐浪洲,周鹏发,等. 强震区穿越软硬断层面铁路隧道衬砌抗震技术研究[J]. 铁道标准设计,2018,62(10):123-129. SHEN Yusheng,TANG Langzhou,ZHOU Pengfa,et al. Study on seismic technology of railway tunnels crossing soft and hard interface in strong earthquake area[J]. Rail Way Standard Design,2018,62(10):123-129.(in Chinese)
[21] SHEN Yusheng,GAO Bo,YANG Xiaoming,et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology,2014,180:85-98.

相似文献/References:

[1]杨万理,李乔.墩-水耦合计算模式及深水桥墩动力响应研究[J].地震工程与工程振动,2012,32(03):130.
 YANG Wanli,LI Qiao.Study on pier-water interaction calculation method and dynamic response of submerged piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(06):130.
[2]彭利英.爆炸作用下钢筋混凝土框架柱的动力及损伤分析[J].地震工程与工程振动,2012,32(04):071.
 PENG Liying.Dynamic and damage analysis of reinforced concrete frame column under explosion[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(06):071.
[3]胡卫兵,王鑫,于海平.城市轨道交通微幅振动对西安南城墙的影响分析[J].地震工程与工程振动,2012,32(04):088.
 HU Weibing,WANG Xin,YU Haiping.Effect of micro vibration of urban rail transit on south city wall in Xi’an[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(06):088.
[4]陈拓,吴志坚,车爱兰,等.机车动荷载作用下多年冻土区铁路路基动力响应的试验研究[J].地震工程与工程振动,2011,31(01):168.
 CHEN Tuo,WU Zhijian,CHE Ailan,et al.Test study on dynamic responses of railroad embankments in permafrost regions under train dynamic loading[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):168.
[5]谢伟平,徐薇,刘隆.人-板耦合动力响应分析[J].地震工程与工程振动,2011,31(03):045.
 XIE Weiping,XU Wei,LIU Long.Research on dynamic responses of human-floor system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):045.
[6]马宏伟,陈文化.大型引水隧道在平面地震波入射下动力响应的解析解[J].地震工程与工程振动,2011,31(06):001.
 MA Hongwei,CHEN Wenhua.Analytic solution for seismic responses of large-span diversion tunnel induced by plane seismic waves[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):001.
[7]陶连金,王文沛,张波,等.近断层地震动破裂向前方向性与滑冲效应对典型地铁车站结构动力响应的影响[J].地震工程与工程振动,2011,31(06):038.
 TAO Lianjin,WANG Wenpei,ZHANG Bo,et al.Effects of rupture forward directivity and fling step of near-fault ground motions on dynamic responses of representative subway station structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(06):038.
[8]翟希梅,黄明.外部爆炸荷载作用下网壳结构的动力响应及其影响参数分析[J].地震工程与工程振动,2012,32(06):073.
 ZHAI Ximei,HUANG Ming.Dynamic responses and influential parameters of reticulated shell subjected to external blast loading[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(06):073.
[9]李鹏,王元丰.黏性阻尼与复阻尼对钢筋混凝土框架结构地震响应影响的分析[J].地震工程与工程振动,2007,27(03):054.
 LI Peng,WANG Yuanfeng.Analysis of seismic responses of RC frames with viscous damping or complex damping[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(06):054.
[10]张鹏,周德源.多层框架结构弹性和弹塑性动力响应比较分析[J].地震工程与工程振动,2007,27(05):040.
 ZHANG Peng,ZHOU Deyuan.Analysis of elastic and elastoplastic dynamic responses of a multi-story frame[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(06):040.

备注/Memo

备注/Memo:
收稿日期:2021-11-20;改回日期:2022-02-28。
基金项目:国家自然科学基金项目(51778540)
作者简介:申玉生(1976-),男,教授,博士,主要从事强震作用隧道工程抗减震技术研究.E-mail:sys1997@163.com
更新日期/Last Update: 1900-01-01